• BLOG
  • INFO
  • PARTNER
  • EBOOK
    • PENSIERI TOPOGRAFICI 2020
    • PENSIERI TOPOGRAFICI 2018-2019
  • SUPPORTAMI

I SISTEMI DI RIFERIMENTO

27 Settembre 2018
immagine di un mappamondo

In questo articolo ti parlo di Sistemi di Riferimento in geodesia, topografia e cartografia.

I SISTEMI DI RIFERIMENTO

Un Sistema di Riferimento (SdR) è un insieme di regole che servono per consocere la posizione di un punto sulla superficie della Terra.
Immagine che rappresenta un piano cartesiano e punti al suo interno con relative coordinateIl piano cartesiano è un famoso sistema di riferimento!
È bidimensionale ed ogni punto è identificato (univocamente) da una coppia di coordinate, X e Y.

Con un po’ di fantasia puoi associare anche un campo da calcio ad un sistema di riferimento bidimensionale!
La divisione della superficie in area piccola, area grande, centrocampo, linee laterali e linee di fondo definisce delle regole.
Mi rendo conto che di fantasia qui ce ne vuole un po’, ma è giusto per farti un esempio al di fuori di numeri e formule matematiche…
🙂
Immagine che raffigura la superficie di un campo da calcio associata ad un sistema di riferimento

Se vuoi conoscere la posizione di un punto sulla superficie della Terra, devi passare da un sistema di riferimento bidimensionale, ad uno tridimensionale.

La superficie della Terra assomiglia a quella di una palla, ad una sfera.
Immagine che rappresenta due fotografie della Terra dallo spazio

Immagine di una terna cartesiana ortogonale che forma un sistema di riferimento tridimensionaleIn realtà la Terra è molto lontana dall’essere una sfera.
Anche se può sembrarti strano, matematicamente parlando, Terra e Sfera non “ci incastrano” quasi niente una con l’altra!
La superficie della Terra è piuttosto complicata.

Ma, al di là di questo, siamo d’accordo sul fatto che sia un elemento solido, un oggetto tridimensionale.
Serve quindi un sistema di riferimento che abbia un grado di complessità in più (in realtà si aggiungono più gradi di complessità!) rispetto al piano cartesiano.
Serve un sistema tridimensionale.

GEOIDE ED ELLISSOIDE

L’uomo ha cercato di descrivere la forma della Terra con formule matematiche.
Questo perchè è molto più comodo per conoscere la posizione di un punto sulla sua superficie.

Ma la Terra è complessa!
Ci sono le terre emerse, le fosse oceaniche, le catene montuose, gli altipiani e le depressioni.
Insomma, la superficie reale della Terra non è rappresentabile matematicamente.

Topografi e cartografi hanno cercato allora un’altra superficie, che ne approssimasse la forma, ma di cui si conoscesse l’equazione.Rappresentazione del geoide terrestre
Hanno “trovato” il Geoide, che assomiglia un po’ ad un pallone cha ha preso un sacco di calci, è pieno di bozze ed è un po’ deformato.
Ti ho messo un’immagine qui a lato.
Il geoide è una superficie equipotenziale perpendicolare in ogni punto alla direzione della forza di gravità.
Ed anche lui (o lei) è una superficie difficile per farci sopra dei calcoli matematici, per misurare distanze e stimare aree.

Il passo successivo è stato scegliere l’ellissoide.

In cartografia, geodesia e topografia la superficie della Terra è approssimata da un’ellissoide di rotazione.
È un solido che nasce dalla rotazione di un’ellisse attorno ad un asse, quello minore, ed in più ha anche uno schiacciamento in corrispondenza dei poli.
È schiacciato come se qualcuno l’avesse compresso con due dita, proprio come si fa con una pallina di plastilina (o di DAS, o di Pongo!).

DATUM GEODETICI

Anche se si tratta di una semplificazione, e quindi se ne accettano approssimazioni, le differenze tra ellissoide e superficie della Terra talvolta sono davvero marcate.
Decine e decine di metri.
E a volte anche di più!

Per questo motivo l’ellissoide può andare bene per rappresentare la superficie della terra in Italia, non essere un granchè per la rappresentazione in Perù o essere un disastro totale in Nuova Zelanda!

Allora nella storia della cartografia mondiale è successo questo:

  • gli studiosi hanno iniziato a “produrre” un gran numero di ellissoidi di rotazione (produrre = definirne i parametri geometrici e, quindi, la formula matematica);
  • gli ellissoidi che funzionavano meglio per approssimare le varie aree di interesse (nazioni o continenti) sono stati traslati per portarne la superficie il più possibile vicino a quella della Terra. In molti casi sono stati anche un po’ ruotati, facendo perno su un punto di contatto ellissoide-superficie terrestre, il punto di orientamento, per adattarli ancora meglio alla rappresentazione cartografica!

Ci sono stati davvero tanti ellissoidi.
Qui te ne cito solo i più famosi:

  • Bessel (1841)
  • Clarke (1866)
  • Helmert (1906)
  • Hayford (1910)
  • Internazionale (1924)
  • GRS80 (1979)
  • WGS84 (1984)
  • IERS (1989)

Si differenziano uno dall’altro per la lunghezza dei due semiassi, maggiore a e minore b, e per il valore dello schiacciamento ai poli, f , che però è una funzione di a e di b.

Quando si assume che, per la rappresentazione cartografica di una porzione di superficie terrestre (come il territorio italiano), si utilizza uno specifico ellissoide, traslato ed opportunamento ruotato per adattarsi al meglio alla Terra (in quella zona), si definisce un datum geodetico, o semplicemente un datum.
Un datum è quindi un modello generato da due parametri di forma (i valori dei semiassi dell’ellissoide) e da sei parametri di orientamento (tre parametri per la traslazione e tre parametri per la rotazione dell’ellissoide).

DATUM GEOCENTRICI E DATUM LOCALI

Quando si prende un ellissoide e si porta a spasso per avvicinarlo alla superficie della Terra, in un’area particolare, si definisce un Datum Locale.

Se invece si fa in modo che l’ellissoide abbia il suo centro coincidente con il centro della Terra (o meglio, con il centro di massa della Terra) si parla di Datum Geocentrico.

Nella figura qui sotto vedi in blu una semplificazione (molto semplificata!) del Geoide, in rosso c’è un ellissoide che ha centro di rotazione coincidente con il centro della Terra (un datum geocentrico) e in verde un datum locale, dove l’ellissoide è traslato e ruotato per aderire bene alla superficie della Terra in una specifica zona.

Immagine che semplifica il concetto di datum geocentrico e datum locale

ROMA 40 – MONTE MARIO

Un datum molto utilizzato in Italia, a partire dal 1948, è il ROMA40.

L’ellissoide di rotazione scelto è quello di Hayford, l’orientamento avviene a Roma Monte Mario ed il meridiano che passa di lì è quello fondamentale per la definizione delle longitudini dei punti.
Questo Datum è stato usato per la produzione cartografia dell’IGM fino alla fine degli anni ’80 e, nonostante la legge italiana lo abbia mandato in pensione da qualche anno (dal 2011), gode ancora di ottima salute ed è largamente usato nella Cartografia Tecnica Regionale (CTR), e non solo.
L’immagine qui sotto è presa da ocean4future.org

Immagine che rappresenta il datum locale Roma40 - Monte Mario

ED50 – EUROPEAN DATUM

L’European Datum 1950 (ED50) è un datum introdotto a livello europeo alla fine della Seconda Guerra Mondiale con lo scopo di uniformare la produzione cartografica europea e minimizzare le deformazioni nelle zone periferiche del continente.
L’ellissoide di riferimento dell’ED50 è quello Internazionale ed è orientato a Postdam, in Germania.

WGS84

I datum geocentrici (e i sistemi di riferimento globali che ne derivano) hanno iniziato ad assumere particolare importanza con lo sviluppo del rilievo satellitare.
Un ellissoide geocentrico approssima abbastanza bene tutta la superficie della Terra.
Nel confronto con un ellissoide locale, quello geocentrico perde per accuratezza di rappresentazione nella zona dove l’ellissoide locale è orientato ma vince, a mani bassi, in tutte le altre parti della Terra.
Il più famoso ellissoide geocentrico è il WGS84 – World Geodetic System.

SISTEMI DI RIFERIMENTO

Ed ora possiamo parlare di Sistema di Riferimento.
Eh sì, perchè un datum non è un sistema di riferimento.

Sull’ellissoide, locale o geocentrico, si deve individuare la posizione di un punto che sta sulla superficie terrestre.
Lo si fa attraverso una coppia di coordinate: latitudine e longitudine, le coordinate geografiche.

Così come succede nel piano cartesiano, quando disegni gli assi e la loro origine, anche sull’ellissoide bisogna scegliere dei riferimenti da cui partire per misurare le coordinate.
Si sceglie l’Equatore ed il Meridiano di Greenwich.
Solo ora è possibile conoscere univocamente la posizione di ogni punto sulla superficie della Terra.

Un Sistema di Riferimento è quindi formato da un datum geodetico e da regole che definiscono i riferimenti per le misure delle posizioni dei punti.

Non si può parlare di Sistema di Riferimento senza parlare di datum, ma non basta parlare di datum per definire un Sistema di Riferimento.

COORDINATE GEOGRAFICHE

Se poi vuoi rappresentare su una carta la posizione di un punto sulla superficie terrestre, devi passare da una superficie curva ad un piano.
Si passa da coordinate geografiche a coordinate piane, o cartografiche.

Non approfondisco questo argomento perchè ne avevo già scritto un articolo, che trovi a questo link.
Se ti va puoi leggerlo, oppure puoi anche ascoltare le puntate 2, 3 e 4 del Podcast di 3DMetrica.
E se hai dubbi o domande non eistare a scrivermi!

Vale ancora la regola che anche sul piano si devono definire gli assi di riferimento per conoscere le coordinate dei punti.
E queste regole, insieme all’ellissoide di riferimento, formano il Sistema di Riferimento Cartografico.

In realtà, quando si parla di coordinate piane, si deve anche dire come si fa a sviluppare la superficie curva dell’ellissoide su un piano.
Se ne deve conoscere il tipo di proiezione.
Anche sulle proiezioni cartografiche trovi un po’ di informazioni nell’articolo che ti ho citato.
Ti dico solo che il sistema di riferimento che fa capo al datum Roma40 è determinato sul piano da una proiezione conforme di Gauss, rivista da Boaga.
Per questo si parla di Sistema di Riferimento Roma40 – Gauss-Boaga.

IL SISTEMA GLOBALE ITRS

Storicamente si sono definiti un bel po’ di sistemi di riferimento geocentrici, associati a vari ellissoidi.
Via via che le misure geodetiche sono diventate sempre più precise è stato possibile definire nuovi parametri geometrici e sistemi di riferimento, più precisi dei precedenti.

L’ITRS è l’International Terrestrial Reference System, il sistema di riferimento globale, mantenuto e reso disponibile dallo IERS, International Earth Rotation Service, che inoltre materializza il cosiddetto ITRF, International Terrestrial Reference Frame.

La materializzazione del sistema di riferimento globale ITRF sfrutta le moderne ed affinate tecnologie di rilievo satellitare ed una serie di stazioni di misura sparse sulla Terra (la rete IGS).
Questo tipo di riferimento, o meglio le materializzazioni del riferimento globale, devono essere aggiornate con cadenza temporale prefissata perchè la deriva dei continenti (mai cessata!) sposta le placche tettoniche terrestri e, con essa, i punti che ci stanno sopra.
Ti ricordo che in geodesia pochi centimetri sono una distanza per niente trascurabile!
Si parla quindi di ITRF associato ad un preciso anno in cui è stato materializzato o, se preferisci, aggiornato, ricalcolato, rivisto.
ITRF00 è la materializzazione del sistema di riferimento ITRS all’anno 2000.
Le misure satellitari di posizionamento delle stazioni della rete IGS si basano sull’ellissoide geocentrico GRS80.

L’ETRS IN EUROPA

In Europa le cose funzionano in modo simili a quello che succede a scala globale.
Nel 1990 fu deciso che l’Europa avrebbe adottato un sistema di riferimento coincidente con l’ITRS all’epoca 1989 e solidale con la placca EuroAsiatica.
Questo sistema prese il nome di ETRS89, European Terrestrial Reference System 1989.
La sua materializzazione corrispondente è l’ETRF89.

La creazione di un sistema Europeo è stata necessaria e legata al fatto che il movimento della placca EuroAsiatica non è per niente trascurabile, rispetto al resto delle placche mondiali, ma le stazioni di riferimento europee che lo materializzano (la rete EUREF), ed i punti a loro associati, praticamente non si muovono uno rispetto all’altro.
Immagina le placche tettoniche come zattere che si muovono sopra il mare di magma del mantello terrestre.
Due placche diverse si allontanano o si avvicinano reciprocamente e lo stesso fanno i punti sopra ciascuna zattera.
Ma i punti di ogni zattera, pur spostandosi con la placca, non cambiano posizione relativa uno rispetto all’altro.

Dal 2000 l’ITRS e l’ETRS89 si sono spostati di circa 25 cm

Mi rendo conto che materializzazione, placche, riferimenti globali ed epoche possono portare un bel po’ di confusione.
Anch’io ne ho avuta parecchia ed alcuni dubbi rimangono.
Ciascun argomento meriterebbe un approfondimento dedicato, ed anche piuttosto lungo.
Perdonami la sintesi ma non credo che sia rilevante entrare nel dettaglio di queste cose per gli scopi di questo articolo.
Tuttavia ho dovuto scriverteli perchè altrimenti non potrei parlarti del Sistema di Riferimento che è in vigore in Italia: l’ETRF2000.

L’ETRF IN ITALIA

Immagine che mostra le stazioni permanenti della Rete Dinamica Nazionale che materilizza il sistema di riferimento ETRF2000Il Decreto 10 Novembre 2011 “Adozione del Sistema di Riferimento geodetico nazionale“ prevede che il Sistema di Riferimento geodetico nazionale adottato dalle amministrazioni italiane sia costituito dalla realizzazione ETRF2000 (all’epoca 2008) del Sistema di Riferimento geodetico Europeo ETRS89.

La materializzazione dell’ETRS89 è stata fatta dall’IGM (Istituto Geografico Militare) tramite una serie di stazioni permanenti di cui si misura, con grande precisione e metodi satellitari, la posizione e che formano la Rete Dinamica Nazionale, RDN.

Il decreto dice anche che tutti i dati cartografici devono essere convertiti al nuovo riferimento.
Purtroppo c’è un bel po’ di ritardo da parte di alcune regioni nella gestione del proprio repertorio cartografico.
D’altra parte sono passati solo 7 anni…
🙁

L’esigenza di aggiornare il buon vecchio Roma40-Gauss/Boaga nasce dalla necessità di dotare l’Italia di un Sistema Geodetico al passo con i tempi e valido anche per applicazioni che richiedano precisioni più elevate.
Prima fra tutte la gestione della rete di stazioni permamenti che forniscono le correzioni per il posizionamento differenziale in tempo reale (RTK) e che hanno bisogno di riferimenti di alta precisione, che non si riuscivano a raggiungere con l’ETRF89.
L’IGM ha quindi deciso di allinearsi al recente “frame” convensionale dell’ETRS89 ufficializzato in Europa: l’ETRF2000 con riferimento temporale al 2008.

Anche l’ETRF2000 si basa sull’ellissoide GRS80.
Il passaggio tra coordianate geografiche e cartografiche nel sistema di riferimento ETRF2000 si fa tramite una proiezione UTM, proprio come avveniva per l’ED50.

I CODICI EPSG

Se consideri tutte le nazioni che ci sono sulla Terra, se pensi che molte di queste hanno avuto una storia cartografica travagliata, proprio come quella italiana, con numerosi cambi di sistemi di riferimento e se fai una semplice moltiplicazione fai presto a capire che Maremagnum di Sistemi di Riferimento ci siano in giro per il mondo.

Con la necessità di scambiare informazioni cartografiche su scala globale e con la diffusione dei software GIS, ed open source, si è resa necessaria una catalogazione di tutte queste informazioni, per evitare confusione ed errori.

I sistemi di riferimento ed i relativi parametri di trasformazione sono stati codificati in registri mantenuti da organizzazioni mondiali.
Tra tutti questi registri, il più diffuso è il registro EPSG (European Petroleum Survey Group) attualmente gestito dal Comitato Geodetico dell’International Association of Oil and Gas Producers(OGP).
I codici EPSG sono ormai riconosciuti come standard per la classificazione dei Sistemi di riferimento in tutto il mondo.

Anche sui codici EPSG ho scritto un articolo, che trovi a questo link, e ti invito a leggerlo se vuoi approfondire l’argomento.

CONVERSIONE E TRASFORMAZIONI TRA SISTEMI DI RIFERIMENTO

Se portare una superficie curva su un piano (da coordinate geografiche a piane) implica delle deformazioni che dobbiamo necessariamente ammettere e con cui dobbiamo convivere, trasportare le coordinate di un punto tra Sistemi di Riferimento che utilizzano due datum diversi è un’operazione piuttosto delicata, che può portare approssimazioni ed errori anche importanti.

Se ci pensi, è piuttosto intuitivo.
Passare da una coppia di coordinate con riferimento ad un ellissoide locale, traslato ed orientato (come per il datum Roma40), ad una coppia di coordinate, che devono individuare sempre lo stesso punto, prese su un ellissoide geocentrico (come il WGS84), non è un’operazione per niente banale!

Se lavori all’interno di uno stesso datum si parla di conversione tra sistemi di riferimento.
Se passi a datum diversi fai una trasformazione tra sistemi di riferimento.

Le formule che regolano la trasformazione tra sistemi di riferimento sono di tre tipi, e te le scrivo in ordine crescente di accuratezza:

  • formule a tre parametri (Molodensky);
  • formule a sette parametri (Bursa Wolf o Helmert);
  • operazioni mediante grigliati di trasformazione (ctable, NTv1 e NTv2).

Le trasformazioni a tre parametri lavorano a livello di coordinate geografiche (latitudine, longitudine, quota ellissoidica), mentre quelle a sette parametri (3 traslazioni + 3 rotazioni + 1 fattore di scala) lavorano su coordinate cartesiane geocentriche (X, Y, Z con origine del sistema di riferimento coincidente con il centro, di massa, della Terra).

Il database dei codici EPSG contiene, per ciascun sistema di riferimento, i parametri necessari da inserire nelle formule per effettuare le trasformazioni

Le trasformazioni a tre o sette parametri generalmente sono caratterizzate da accuratezze non sempre soddisfacenti (a seconda delle esigenze del lavoro in corso), perchè non riescono a considerare le distorsioni tra due datum.
Per raggiungere una precisione topografica è necessario affidarsi ai grigliati prodotti da IGM che hanno al loro interno i valori di scostamento tra i datum e, utilizzati all’interno di specifici software interpolatori, sono la migliore soluzione per la trasformazione di coordinate.

Personalmente utilizzo i grigliati dell’IGM ed il software Convergo per la trasformazione di coordinate e ne ho scritto un articolo che trovi a questo link.

IN CONCLUSIONE

Ti ringrazio per essere arrivato a leggere questo articolo fino a qui.
Per concluderlo ti faccio un elenco di domande dirette e risposte, altrettanto dirette, che mi vengono in mente sul tema, che spesso mi sono fatto quando stavo lavorando su qualche caso specifico o che ogni tanto mi chiedono.

Scegliere un ellissoide vuol dire definire un sistema di riferimento?
No.
Scegliere un ellissoide vuol dire trovare la migliore figura solida che approssima il Geoide.

Allora una volta che prendo un ellissoide, lo sposto dove mi torna comodo e lo ruoto ho definito un sistema di riferimento?
No.
Hai definito un datum geodetico.

E che cosa manca per arrivare ad un sistema di riferimento?
Mancano le regole che decidono come contare le coordinate che individuano un punto sulla Terra: l’origine degli assi cartesiano ed il verso positivo di x, y e z, oppure il meridiano e la latitudine “0” da cui si iniziano a contare le coordiante geografiche.

I sistemi di riferimento in geodesia valgono soltanto per le coordinate geografiche e le misure prese sull’ellissoide?
No.
I sistemi di riferimento valgono anche quando si passa da una superficie curva ad un piano, ad una carta, ad una mappa.
In questo caso bisogna anche dire come si è ricavata la mappa, che tipo di proiezione si è usata.

Che coordinate mi fornisce una misura satellitare presa con un ricevitore in modalità NRTK con correzioni ricevute dalla Rete Dinamica Nazionale?
Hai coordinate geografiche e quote ellissoidiche nel Sistema di Riferimento ETRF2000 (2008).

Che differenza c’è tra le coordinate piane di un punto nel sistema di riferimento Roma40-GaussBoaga e ETRF2000?
Circa 30 metri sulla coordianata Est (X) e circa 20 metri sul Nord (Y), senza considerare la falsa origine attribuita alle coordinate del sistema Roma40.

Che differenze ci sono tra ETRF89 e ETRF2000?
Inferiori al centrimetro.

Che differenze ci sono tra WGS84 e ETRF2000?
Fino a 40 centrimetri (percè dal 1984 al 2000 la placca EuroAsiatica, a cui si aggancia l’ETRF2000, si è spostata di questa quantità).

 

Se hai altre domande o dubbi ti prego di segnalarmele nei commenti qui sotto oppure scrivimi un’email a paolo.corradeghini (at) 3dmetrica.it o ancora (e questo è il modo che preferisco) mandami un messaggio su Telegram cercandomi come @paolocorradeghini.
Possiamo scambiarci note audio ed essere molto più esaustivi nelle risposte (oltre che risparmiare un bel po’ di tempo!).

E se vuoi unirti alla comunity di 3DMetrica su Telegram lo puoi fare iscrivendoti al canale che trovi cercando @tredimetrica!

 

Spero di averti dato informazioni utili o delucidazioni su un argomento a volte un po’ nebuloso come quello dei sistemi di riferimento, tuttavia fondamentale per chi lavora nel campo della topografia!

 

Grazie ancora per avermi dedicato un po’ del tuo tempo.

A presto!

 

Paolo Corradeghini.

 

Puoi ascoltare i contenuti di questo articolo anche in questa puntata del podcast di 3DMetrica!
[spreaker type=player resource=”episode_id=15839938″ width=”100%” height=”200px” theme=”light” playlist=”false” playlist-continuous=”false” autoplay=”false” live-autoplay=”false” chapters-image=”true” episode-image-position=”right” hide-logo=”false” hide-likes=”false” hide-comments=”false” hide-sharing=”false” ]

Se pensi che possa essere utile ad altri, condividilo!Share on Facebook
Facebook
Share on LinkedIn
Linkedin
Tweet about this on Twitter
Twitter
Email this to someone
email

Related posts:

  1. GEOREFERENZIAZIONE. CHI?!?!
  2. TRASFORMARE LE COORDINATE
  3. I CODICI EPSG
  4. CONVERTIRE COORDINATE CON CONVERGO
cartografiacoordinateellissoidegeodesiageoidesistemi di riferimentotopografia
Share

CARTOGRAFIA

Paolo Corradeghini

You might also like

Stazione Totale, misure di distanza, coordinate proiettate e cose che non tornano
14 Maggio 2022
MONITORAGGIO E CONSIDERAZIONI SUL TEMA
4 Maggio 2022
Trasformazione di coordinate e grigliati IGM
16 Luglio 2021

Lasciami un commento!

  • Commenta nel riquadro qui sotto
  • Commenta con Facebook

13 Comments


GIORGIO GRINFAN
1 October 2018 at 15:05
Reply

Anche questo articolo è molto ben fatto, preciso ma semplice nella lettura. Ti seguirò ancora in futuro con molto piacere. Ciao, Giorgio



    Paolo Corradeghini
    1 October 2018 at 20:42
    Reply

    Ciao Giorgio, grazie per il tuo commento e per la tua fiducia.
    A presto!
    Paolo

Alberto Raschieri
1 October 2018 at 15:18
Reply

Come al solito il tuo stile divulgativo chiarisce nello spazio di un articolo quello che spesso è considerato un passaggio ostico della topografia. Bravo Paolo, continua così.



    Paolo Corradeghini
    1 October 2018 at 20:44
    Reply

    Grazie mille Alberto, in effetti l’argomento Sistemi di Riferimento è spesso fonte di dubbi topografici.
    Spero di essere riuscito a semplificare (per quanto possibile!) la spiegazione.
    A presto!
    Paolo

Nicola zaccaro
1 October 2018 at 17:23
Reply

Bellissimo Articolo, Articolato molto bene , le sarei grato se nella prossima newsletter trattasse in dettaglio le coordinate geocentriche



    Paolo Corradeghini
    1 October 2018 at 20:45
    Reply

    Ciao Nicola, grazie per il commento e per il suggerimento.
    Non so se riuscirò a trattare le coordinate geocentriche già nel prossimo articolo ma ti assicuro che l’ho segnato nella lista dei prossimi articoli.
    A presto!
    Paolo

Marzio Marinelli
1 October 2018 at 19:01
Reply

Ancora complimenti per la bella serie di articoli dedicati ai sistemi di riferimento, con l’usuale balance tra rigore scientifico e divulgazione



    Paolo Corradeghini
    1 October 2018 at 20:46
    Reply

    Ciao Marzio,
    grazie anche a te per il tuo commento!
    Alla prossima!
    Paolo

Marzio Marinelli
1 October 2018 at 19:02
Reply

Ancora complimenti per la bella serie di articoli dedicati ai sistemi di riferimento, rigorosi ma di piacevole lettura



Franco Gallo
2 October 2018 at 17:21
Reply

Molto bello e ben fatto. complimenti paolo. bravo.



    Paolo Corradeghini
    2 October 2018 at 21:34
    Reply

    Ciao Franco, grazie mille del tuo commento!
    Paolo

Davide
6 July 2020 at 17:07
Reply

Un saluto e grazie per i numerosi articoli molto interessanti…
Li stavo leggendo per esigenze di lavoro e mi è venuto il seguente dubbio.

Rilievo con un sistema GPS. Il sistema di coordinate “nativo” del GPS è l’ellissoide WGS84 orientato nel centro della terra con long. 0 a Greenwich (sistema globale). Sbaglio?

In Europa si usa però per ETRS89 che si basa sull’ellissoide GRS80. Anche l’ETRS89 dovrebbe essere un sistema globale, che AVEVA origine nel centro della terra ed orienamento come il WGS84. Essendo però un sistema “ancorato” alla placca europea, ogni anno si sposta e quindi, se all’inizio WGS84 era praticamente coincidente con ETRS89 (a meno della differenza dell’ellissoide pari a 0,105 mm sul semiasse minore), ora non lo è più.

L’ETRS89 o meglio ETRF89 è stato “aggiornato” al ETRF2000 che è il sistema di coordinate in uso -per legge- in Italia a seguito del DM del 2012.

L’ETRF2000 è un “datum” ovvero: definizione ellissoide -GRS80- + definizione orientamento -quale????- + proiezione -Trasversa di Mercatore per l’IT-).

Le mie coordinate lette dal GPS non sono certamente quelle ETRF2000, anche se la differenza per fini cartografici, dovrebbe essere entro i 50 cm e quindi non mi causa problemi. Giusto?

Posso però impostare il mio controller GPS per la correzione in real time basandosi sui dati di “GPS Lombardia” che vengono forniti in ETRF2000; in tal modo ovviamente leggo le coordinate “corrette e convertite” in ETRF2000.

Qui si pone il problema quote. L’ETRF2000 me le da rispetto ad un ellissoide e non rispetto al geoide (livello del mare) che sono quelle che mi servono.

Per trasformarle volevo usare CONVERGO, dando come dato di input “Piane – ETRS89 – UTM ETRF2000” (di fatto sono quelle calcolate dal controller GPS avendo applicato le correzioni tramite i dati “GPSLombardia” e le conversioni tramite i “famosi grigliati”). La quota che immetto è quota ELLISSOIDICA.

Output tutto uguale tranne la quota: GEOIDICA.

Anche in Convergo imposto i grigliati e procedo con conversione: le coordinate non cambiano e la quota si. Sarà corretta la quota???

Ho provato a fare la conversine partendo da un punto-borchia GPS IGM e la quota “non torna”… Ha uno scarto di 3 cm. Perchè? Può essere che l’IGM ha calcolato la quota della borchia tramite livellazione mentre io l’ho approssimata con la conversione Convergo attravers i grigliati!?

Grazie a tutti dell’attenzione,
Davide



    Paolo Corradeghini
    9 July 2020 at 15:06
    Reply

    Ciao Davide,
    grazie per il tuo messaggio e per le tue considerazioni, molto interessanti e precise, su ellissoidi, coordinate e sistemi di riferimento!

    Venendo al problema della quota a cui ti riferisci nella seconda parte del tuo testo mi viene da dirti che un errore di 3 cm tra misure GNSS (RTK) e quota del chiodo è del tutto plausibile.

    In primo luogo perchè, come hai detto giustamente tu, se si tratta di un caposaldo di livellazione altimetrica, la misura della quota è stata fatta proprio con la livellazione che, ad oggim rimane la tecnica più precisa per questa misura.

    In secondo luogo perchè la precisione sulla misura della quota da una misura GNSS RTK è nell’ordine dello scarto che hai trovato tu.

    Spero di aver capito bene la tua domanda.
    In caso contrario sentiti libero di scrivermi di nuovo e proviamo ad esplorare meglio il tema che hai proposto.

    A presto!

    Paolo

  • CHI SONO

    Paolo Corradeghini immagine profilo
    Paolo Corradeghini, ligure, classe 1979, ingegnere per formazione, topografo di professione, sportivo per necessità e fotografo per passione. Fai click sulla mia faccia e scopri qualche informazione in più.
  • SE VUOI PUOI SUPPORTARMI

    Diventa finanziatore di 3DMetrica

    Se quello che pubblico e che condivido è interessante ed è qualcosa di valore per te, per il tuo lavoro e per la tua attività, puoi scegliere di supportare il progetto di 3DMetrica diventandone finanziatore.
    Clicca sull'immagine qui sopra per avere più informazioni.
  • C’È IL CANALE TELEGRAM!

    Canale Telegrma 3DMetrica
    Iscriviti al canale Telegram di 3DMetrica dove, ogni giorno, condivido aggiornamenti, informazioni, contenuti, notizie, novità e dietro le quinte del mio lavoro.
    In amicizia e senza formalità!
    ISCRIVITI QUI!
  • CERCA NEL BLOG

  • EBOOK – Pensieri topografici del 2020

    Ebook-pensieri-topografici-2020
  • EBOOK – Pensieri topografici 2018-2019

    Ebook-pensieri-topografici-2020
  • PUOI SEGUIRMI SU INSTAGRAM…

    tredimetrica

    [Nuvole Lidar e classificazione automatica del ter [Nuvole Lidar e classificazione automatica del terreno - Prima di tutto togli (almeno) gli "Outliers"]
Prima di fare la classificazione automatica del terreno degli elementi di una nuvola di punti Lidar ti conviene pulirla un po' affinchè il risultato del processo sia buono.

Gli "outliers" sono i più insidiosi.
Se ad esempio ci sono punti isolati sotto il livello reale del piano campagna, questi possono dare indicazioni fuorvianti al classificatore.

Nelle immagini che condivido in questo post vedi:
1. una nuvola Lidar (completa e colorata);
2. la classificazione del terreno senza la preventiva rimozione degli outlier;
3. la nuvola vista di lato con evidenza degli outlier;
4. la classificazione del terreno dopo la pulizia.

#lidar #nuvoledipunti #3d
    [Stazione Totale - Misure di distanza - Coordinate [Stazione Totale - Misure di distanza - Coordinate proiettate e cose che non tornano]
Fai attenzione al fattore di scala dei sistemi di riferimento proiettati quando fai misure con la stazione totale.

La distanza diretta, misurata con stazione totale, tra due punti in campo è diversa tra la distanza proiettata sul piano e presa tra le coordinate Nord ed Est degli stessi punti misurati con un GPS.

Nel passaggio da un sistema di coordinate geografiche ad un sistema cartografico si applica un fattore di scala.
Nel sistema di riferimento ETRF2000-UTM, questo fattore di scala è 0.9996.

Su 100 m lasci per strada 4 cm.
Su 3 km perdi 1.20 m!

Credo che questa sia un'informazione molto importante da gestire nei rilievi e nella restituzione.
    [Laser scanner e ombre] Il laser scanner è una m [Laser scanner e ombre]

Il laser scanner è una misura attiva ma i raggi emessi non distruggono gli oggetti che incontrano nel loro percorso!

Ci sono scanner che permettono di registrare più ritorni, per lo stesso raggio, ma se questo sbatte contro un muro, un tetto, un'auto o il terreno, non riesce ad andare oltre.
E meno male!

Al di là di questa introduzione, in una scansione terrestre (TLS) è molto probabile che ci siano ostacoli che fermano parte dei raggi e proiettano delle "ombre" nella nuvola di punti.
Lì non ci sono informazioni.

La forma e, soprattutto, la distanza dell'ostacolo dall'emettitore determinano la dimensione dell'ombra.

Anche se un elemento sembra poco rilevante rispetto alla scena da scansionare, la sua ombra potrebbe cancellare parecchi punti che, tradotti in superficie da rilevare, possono diventare parecchi metri quadrati.

Se non puoi liberarti dell'ostacolo l'unico modo per riempire le ombre è quello di fare più scansioni, da punti diversi, in modo che l'emettitore riesca a "vedere" oltre.

La programmazione di un rilievo laser scanner in campo tiene conto anche di questo.
Più stazioni fanno aumentare i tempi operativi di lavoro.
E con uno scanner ad approccio topografico le scansioni extra si fanno sentire nel budget finale delle ore in campo!

#laserscanner #3d #nuvoledipunti #pointcloud #trimble #trimblesx10
    [Aerofotogrammetria - Ortofoto sull'acqua] Si poss [Aerofotogrammetria - Ortofoto sull'acqua]
Si possono creare ortofoto d'acqua (ferma) anche se il modello 3D fotogrammetrico fa schifo ed è bucato.

Se la nuvola di punti o la mesh sono "bucate" è perchè il software non è stato capace di trovare punti di legame nell'allineamento delle immagini.
Ma non è detto che l'ortofoto non possa venire fuori ugualmente bene.
Par farlo succedere devi creare una superficie di riferimento, su cui "stendere" le fotografie, ortorettificate, priva di buchi.
Puoi usare il DEM o la Mesh.
Quando fai creare il DEM (Modello Digitale di Elevazione) hai la possibilità di dire al software di interpolare i buchi.

L'interpolazione della mesh non sempre va a segno al primo colpo (in realtà neppure quella del DEM) ma ci sono altri strumenti (più o meno avanzati) che ti vengono in aiuto.

L'accorgimento da prendere in fase di presa fotografica è di estendere la copertura delle fotografie ad un bel pezzo extra di riva, dove sei sicuro che il software fotogrammetrico lavorerà senza problemi nella creazione di nuvola di punti e mesh.

#ortofoto #fotogrammetria #aerofotogrammetria #3d #nuvoladipunti #mesh #dem
    [Rilievi di argini e vegetazione] Gli argini di c [Rilievi di argini e vegetazione]

Gli argini di canali artificiali, realizzati in terra, si prestano bene ad un rilievo aerofotogrammetrico ma, affinché il rilievo sia davvero efficace, andrebbe fatto dopo la pulizia dalla vegetazione.

Un sorvolo su un argine pulito permette di creare una nuvola di punti efficace da cui estrarre informazioni per tutta la lunghezza del tratto rilevato.

Se invece le sponde sono vegetate, il dato che si ottiene potrà essere buono qua e là ma sarà comunque globalmente più scarso rispetto alle condizioni ideali.

Lo sfalcio ed il decespugliamento sono attività che possono avere costi importanti.
Gli Enti locali hanno solitamente un piano di sfalcio sulle aree di competenza, specialmente se si tratta di zone frequentate, aree verdi, parchi e percorsi ciclopedonali.
Se hai tempo di aspettare, vale la pena coordinarsi in tal senso per andare in campo subito dopo le pulizie programmate.
Se invece hai fretta si devono accettare costi maggiori per lo sfalcio straordinario.

O si può andare in campo con la tecnologia LiDAR su drone per riuscire a penetrare la copertura vegetale.
Anche se non sempre si riesce a fare!

P.S.
Tutto questo vale per la parte emersa.
Per andare sott'acqua servono altri strumenti!
    [Monitoraggio e considerazioni sul tema] Prendend [Monitoraggio e considerazioni sul tema]

Prendendo spunto da una recente installazione di sistema di monitoraggio della falesia del Cimitero di Camogli (con tecnologia GNSS da parte di Gter e Yet It Moves) faccio alcune considerazioni sul tema.
Gli strumenti per monitorare possono essere tanti e quello che accumuna ogni situazione è la ripetizione nel tempo delle misure.

La precisione del controllo può già fare una discriminazione.

Il caso di Camogli pone poi l'attenzione sul "quante misure fare nel tempo".
Una rete GNSS che elabora dati in continuo permette di accedere alle letture dei singoli nodi con una frequenza alta (si che può arrivare ad essere anche di qualche ora).

A Camogli mi sono occupato dei rilievi fotogrammetrici e laser scanner di tutta la porzione di costa, in due momenti differenti, da cui si sono potuti misurare movimenti macroscopici che hanno permesso di fare valutazioni successive per la scelta dei punti di installazione dei sensori del monitoraggio di precisione.

Credo anche che sia rilevante l'aspetto della responsabilità di chi restituisce un dato da monitoraggio.
Questi dati servono per scelte progettuali, decisioni di sicurezza e protezione civile per niente banali.
Vale la pena "metterci la testa".

Io non sono un esperto di monitoraggi, anzi non lo sono per niente, ma il tema della misura legata, in qualche modo, alla "quarta dimensione", quella del tempo, mi affascina molto.
Se hai contributi, commenti o esperienza da condividere fallo assolutamente perchè il tema è interessante!
    Sono iniziati (in realtà già da qualche mese) i Sono iniziati (in realtà già da qualche mese) i lavori di messa in sicurezza dei versanti sopra la Via dell'Amore ed il ripristino della passeggiata, chiusa ormai da diversi anni).

Reti di placcaggio, barriere paramassi, nuove gallerie e rifacimento di tutto il percorso per un po' di milioni di euro ed almeno due anni di tempo.

Dovrei supportare i lavori con alcune "cose" dall'alto...

#viadellamore #parcocinqueterre  #lavori #roccia #drone
    [Laser scanner, nuvole colorate e fotocamere integ [Laser scanner, nuvole colorate e fotocamere integrate]

Per colorare una nuvola di punti da scansione laser servono delle fotografie.
Ci sono ormai parecchi scanner con fotocamera integrata, che semplificano il lavoro dell'operatore.

L'esposizione delle immagini deve essere la più "corretta" possibile per  riprodurre al meglio l'informazione colorimetrica nei punti della nuvola.

Non conosco il funzionamento specifico di ogni camera ma vale la pena dedicare un po' di tempo a capire come lavora l'esposimetro ed evitare così punti bianchi (per foto sovraesposte) o neri (per sottoesposizione).

Nel caso della SX10 di Trimble (l'unico caso che conosco), si può fissare un'esposizione costante ed è ok se l'illuminazione della scena scansionata non cambia.
I risultati sono scarsini se si passa da alte luci ad ombre e viceversa.

Nelle prime due immagini la nuvola è colorata da foto con esposizione fissa e presa ai due estremi delle zone di luminosità della scena scansionata.

L'altra opzione possibile è quella di scegliere un'esposizione automatica e variabile che permette di compensare i cambi di luce, per un risultato più armonico.

Occhio che l'angolo di campo dell'ottica incide parecchio.
È difficile avere tutto quanto esposto perfettamente in un'immagine sferica a 360°.
A meno di non sfruttare la tecnica dell'HDR (che alcuni scanner fanno)

Se poi c'è la possibilità di usare più camere (a lunghezza focale diversa) per scattare foto da usare nella colorazione della nuvola, quella a campo più stretto permette una lettura dell'esposizione più accurata rispetto alle panoramiche.
Ma servono più foto per coprire l'intera scena.
    [Fotogrammetria ed attenzione al colore] Spoiler: [Fotogrammetria ed attenzione al colore]
Spoiler: questo post non è interessante se ti occupi solo di fotogrammetria per il rilievo del territorio.
Ma se fai anche ricostruzioni 3D di edifici storici, beni culturali, monumenti ed opere d'arte di ogni forma e dimensione, credo che serva molta attenzione anche alla riproduzione fedele del colore nel processo fotogrammetrico.

Nella campagna di scatto è necessario utilizzare degli oggetti  che permettano di correggere le dominanti di colore in post elaborazione.
Si tratta generalmente di tabelle formate da quadrati colorati (in cui ogni colore è codificato).
In inglese si chiamano "color checker".
Li dovresti mettere nella scena e fotografare nelle stesse condizioni di illuminazione dell'oggetto del rilievo.

In post elaborazione poi si prendono le immagini in cui è presente il color checker e si applicano correzioni cromatiche sulla base del colore "letto" nell'immagine rispetto a quello che dovrebbe essere realmente (i valori codificati).

Tutto questo deve essere accompagnato da un altro paio di cose:
1. il controllo dell'illuminazione della scena;
2. un monitor calibrato (tutto passa attraverso i pixel del tuo schermo e se non sono "veritieri" il rischio di vanificare tutto il processo che ti ho raccontato, avendo una percezione sballata dei colori, è alto).

#fotogrammetria #colore #colorchecker
    [Lidar e software di elaborazione dei dati] Condiv [Lidar e software di elaborazione dei dati]
Condivido alcune caratteristiche che un software di elaborazione dati Lidar (da drone) dovrebbe avere.

1. Gestione dei dati grezzi della base GNSS di riferimento per il calcolo della traiettoria.

2. Aggiustare e/o correggere le traiettorie.

3. Dividere la traiettoria e, conseguentemente, la nuvola di punti.

4. Colorare la nuvola di punti e gestire problemi di "matching" tra immagine e traiettoria.

5. Gestione di datum, sistemi di riferimento e coordinate.

6. Misurare la nuvola di punti.

7. Visualizzare i punti secondo le informazioni dei campi scalari (intensità e numero di ritorni, tempo di acquisizione, ...)

8. Esportazione della nuvola in formati comuni.

Poi ce ne sono altri, non necessari, ma che possono aiutare l'elaborazione.

9. Segmentare, ritagliare ed eliminare parti della nuvola di punti.

10. Filtrare la nuvola per eliminare rumore ed outliers, oltre che sottocampionarla

11. Classificare i punti con algoritmi automatici.

12. Verificare l'accuratezza con punti di coordinate note.

13. Generare report di elaborazione.

Dimentico senz'altro qualcosa.
Se vuoi aggiungere, integrare o commentare in base alla tua esperienza sentiti davvero libero o libera.
È utile per tutti.

#lidar #nuvoledipunti #3d #pointcloud #software #editing #realitycapture
    Se sei in un posto aperto a misurare con il GPS pu Se sei in un posto aperto a misurare con il GPS puoi anche tenere la palina bassa, i satelliti si vedono ugualmente bene.

#gnss #gps #rilievo #topografia #misura
    È importante aggiornare i firmware degli strument È importante aggiornare i firmware degli strumenti di rilievo ed i software dei dispositivi che li controllano.

Credo che l'evoluzione tecnologica di quello che si usa in campo si porti con sé la necessità di una consapevolezza nuova sulla loro manutenzione.

Se prima gli aspetti legati alla taratura, al controllo delle parti meccaniche, ..., bastavano per permetterne il funzionamento, ora serve un'attenzione in più.

Non vale per ogni strumento che si vede in giro, ma credo che, piano piano, sarà un aspetto con cui tutti ci confronteremo.

Le case produttrici ti permettono di aggiornare continuamente una stazione totale o un laser scanner con nuovi firmware, che ne integrano funzionalità o correggono dei "bug".

E lo stesso succede per i software che girano sui dispositivi di controllo (smartphone, tablet, ...).

Nuove release migliorano la user experience o, anche qui, sistemano gli errori.

Se dopo un rilievo spari aria compressa e spennelli una stazione totale per togliere la polvere, prima di andare in campo dovresti controllare che software e firmware siano ok e tutto sia funzionante.

Usiamo strumenti tecnologicamente fantastici che tuttavia potrebbero incepparsi in campo per qualche "banale" conflitto software irrisolto.

#rilievo #strumenti #topografia #software #firmware
    La fotogrammetria non è la tecnica ideale per lav La fotogrammetria non è la tecnica ideale per lavorare con la vegetazione: copre il terreno che sta sotto (in una presa da drone) e non è facile ricostruirla.

Fotografie ad alta risoluzione, scattate da un sensore grande (full frame), possono avere problemi maggiori per ricreare nella nuvola di punti, le chiome di alberi.

Da quando ho iniziato ad usare una fotocamera più performante (full frame - 40 Megapixel) rispetto a quelle che ho usato in passato (1" - 24 Megapixel) sto verificando dei buchi nella nuvola di punti laddove ci sono alberi spogli.
Può sembrare controintuitivo ma è così.

Fotografie troppo dettagliate, di elementi molto complessi, porosi e con informazioni disposte su vari piani (tutta l'altezza degli alberi) non aiutano il software, anzi...

Per provare ad avere qualche informazione in più lì sopra,  puoi lanciare l'elaborazione della nuvola di punti ad una qualità inferiore.
Le immagini del dataset vengono sottocampionate (la risoluzione si riduce) ed il software structure from motion lavorerà con una minore quantità di dettagli descritti nei pixel.
Questo aumenta il numero di punti lungo gli alberi, anche se la loro confidenza (cioè l'attendibilità della posizione 3D) è piuttosto scarsa.
Oh, non è che il problema sia superato, anzi...
La nuvola di punti in effetti fa ancora piuttosto schifo.

La presenza di foglie aiuta il processo quindi se vuoi avere informazioni sulle altezza degli alberi è meglio acquisire i dati in estate.
Ed anche il tipo di albero (forma e dimensione) influenza il risultato...

#fotogrammetria #structurefrommotion #nuvoledipunti #3d #pointcloud
    Il back up dei dati subito dopo un rilievo, mette Il back up dei dati subito dopo un rilievo, mette al sicuro il lavoro della giornata.

Molti dispositivi di controllo sono palmari, smartphone o tablet, piuttosto avanzati, ma pur sempre a rischio di danneggiamento software o, peggio, furto o danno fisico.

Perdere i dati di una giornata di lavoro può avere conseguenze importanti.

Se hai rilevato qualcosa che non c'è più (scavo, abbancamento, demolizione) non potrai ripetere il rilievo.

Ci sono vari livelli di "sicurezza" per i dati di uno strumento.

Salvare i dati in una memoria interna (ad uno scanner o una stazione totale) ed in quella del controller ti permette di avere i file in due posti distinti.

Backuppare un lavoro in una chiave USB o in un hard disk esterno è un'altra opzione valida. Vale però per dispositivi dotati di porta USB.

Salvare i dati nel cloud è forse la scelta più sicura. Attivando un hot spot con lo smartphone riesci a mandarli in posti che sono a prova di furto o danno. Il cloud ti permette anche di essere molto efficiente se c'è qualcuno pronto a riceverli ed iniziare subito ad elaborarli.

Una volta ho temuto di aver perso i dati di un rilievo "un po' complicato".
Non ho passato una bella mezz'ora!
    [Laser scanner e traffico] Un camion che passa da [Laser scanner e traffico]

Un camion che passa davanti ad un laser scanner e è un ostacolo al rilievo.
A volte il traffico si riesce a gestire (movieri, gestione del cantiere o indicazioni specifiche, ...).
Altre volte no.
L'ideale immobilismo è, di fatto, irrealizzabile.

Alcuni scanner hanno la possibilità di mettere in pausa, una scansione per riprenderla una volta passato il mezzo.

Anche aumentare la qualità della scansione può aiutare.
Spesso una qualità maggiore significa effettuare la scansione, della stessa area, più volte.
Se i mezzi si muovono, ci sono buone probabilità che, se te li ritrovi tra i piedi al primo giro, non ci saranno più al secondo.

Fare scansioni da punti diversi aiuta.
Scegli punti di scansione in modo che si integrino uno con l'altro.

Oppure  puoi sempre considerare l'ipotesi di fare il rilievo di notte quando, auspicabilmente, il traffico è ridotto o assente.
    Un ponte può creare problemi ad un rilievo con Li Un ponte può creare problemi ad un rilievo con Lidar lungo un alveo

Manca il pezzo d'alveo sotto al ponte.
Non è sempre vero.
Ma può capitare.

Non c'è l'intradosso ed i dettagli non sono ricchissimi.

La classificazione del terreno può venire ingannata.
Non è facile per un software di classificazione automatica  distinguere il ponte dal terreno.
Se ci pensi ha la stessa quota del piano stradale.

Questi problemi si possono risolvere.

Una scansione con laser terrestre mette (forse) a posto i primi due punti 

Se c'è acqua o non riesci ad andare sotto all'impalcato puoi interpolare il terreno con le informazioni a monte ed a valle.
Se però c'è una soglia o un salto dovrai battere dei punti con una stazione totale.

Per la classificazione automatica l'intervento manuale è la soluzione migliore per garantire un risultato confidente.

Il Lidar da drone è molto efficace per acquisire dati in questi ambiti (occhio alla vegetazione!) ma l'integrazione strumentale è sempre la soluzione più efficiente.

#rilievo #rilievo3d #lidar #drone #lidardadrone #3d #realitycapture #alveo #idraulica #dtm #nuvoledipunti
    Non è detto che quello che ti serva sia un'ortofo Non è detto che quello che ti serva sia un'ortofoto di una facciata.
Potresti correggere la distorsione prospettica con software di fotoritocco e "raddrizzare" l'immagine (per i tuoi scopi).

Il punto di presa e la forma dell'oggetto fotografato deformano la rappresentazione secondo una vista prospettica.
Linee parallele nella realtà (muri verticali) sono convergenti nello spazio immagine.

Tutti i principali software di photoediting hanno strumenti di correzione della prospettiva.
Ci sono nel famoso Photoshop, nell'open source Gimp e nel "nuovo" ed economico Affinity Photo.

Funzionano più o meno nel solito modo.
Intervieni sulle immagini alterando i pixel e, aiutato da una griglia virtuale, allinei gli elementi dell'immagine alla maglia.
È veloce e non richiede hardware super.

La posizione reciproca tra punto di presa ed oggetto fa molto.
Così come la forma di quello che hai fotografato è rilevante.

È diverso dal fare un'ortomosaico.
Così come è diverso dall'usare, in campo, un obiettivo basculante e decentrabile ("tilt/shift") per le foto.
Ma è piuttosto pratico e può funzionare ugualmente.

Dopo tutto il raddrizzamento delle foto del costruito è una tecnica che gli architetti usano da parecchio tempo.
😉
    Se non puoi fare a meno di parcheggiare la tua aut Se non puoi fare a meno di parcheggiare la tua auto al di fuori dell'area del rilievo, vale la pena fare attenzione a dove la posteggerai.
Non è uno scherzo!
:)

La fotogrammetria è una tecnica passiva e gli algoritmi Structure from Motion riescono a ricostruire solo quello che si vede nelle immagini.
Un'automobile è un elemento di disturbo, neppure troppo piccola.
Può nascondere informazioni importanti o potrebbe essere difficile da togliere dalla nuvola di punti.

Parcheggiarla in un'area pianeggiante, su una superficie omogenea è una buona idea.
I motivi sono (almeno) due.

Il primo è che puoi facilmente ritoccare le fotografie dove è presente in modo da rimuoverla.
Software di fotoritocco hanno strumenti molto efficienti!
Può richiedere un po' di tempo (dipende dal numero di foto) ma il risultato è generalmente buono.
Qui sotto vedi un "prima" ed un "dopo" fotoritocco.

ll secondo motivo è che, se non ritocchi le foto, l'auto sarà un elemento isolato nella nuvola di punti che "emerge" dal terreno.
Questo ti permette di trattarla velocemente ed efficaciemente per rimuoverla, tenendo solo i punti del terreno.

Se la parcheggi a ridosso del piede di una parete di roccia non sarà immediato fare le cose che ho scritto qui sopra.
    Carica di più... Seguire Instagram
  • VUOI ISCRIVERTI ALLA NEWSLETTER?

    Newsletter di 3DMetrica Ti prometto che riceverai una sola email alla settimana.
    Salvo qualche (rara) eccezione...
    Una volta alla settimana ti scrivo i post che pubblico quotidianamente sui miei canali social network, ti metto il link all'ultimo articolo del blog (sperando di farcela a scriverne uno ogni settimana!) ed anche il link per ascoltare la nuova puntate del podcast di 3DMetrica.
  • ARGOMENTI

    CARTOGRAFIA DRONI EBOOK FOTOGRAMMETRIA LASER SCANNER LAVORI LIDAR PODCAST RILIEVI Senza categoria SOFTWARE STRUMENTI TOPOGRAFIA TUTORIAL
  • PAROLE CHIAVE

    3D 3dmetrica 5 terre aerofotogrammetria agisoft photoscan altimetria angoli apr cartografia cloud compare cloudpoints coordinate dem dissesto idrogeologico drone droni elaborazione fotografia Fotogrammetria GIS GNSS GPS GSD immagini laser scanner lidar misura misure nuvola di punti nuvole di punti ortofoto photoscan quota rilievo rilievo aerofotogrammetrico rilievo con drone sapr sistemi di riferimento software stazione totale structure from motion strumenti topografia tutorial uav



© Copyright Ing. Paolo Corradeghini 2021 - PIVA 01260880115