• BLOG
  • PODCAST
  • VIDEO
  • E-BOOK
  • INFO
  • LAVORI
  • SUPPORTAMI
  • AMICI
    • FINANZIATORI
    • PARTNER
  • POSIZIONE APERTA

DTM vs DSM vs DEM

27 Dicembre 2017

In questo articolo ti parlo di DTM e DSM, di DEM e delle differenze tra questi modelli digitali di elevazione che spesso si confondono uno con l’altro.

DTM vs DSM vs DEM

DTM – DSM – DEM: se lavori un po’ con strumenti GIS, se ti sei mai addentrato nei portali cartografici online, da cui puoi consultare e scaricare i dati territoriali a varia scala locale (regionale, provinciale, comunale), se ti sei scontrato con  analisi cartografiche o hai ricevuto elaborazioni topografiche da rilievi fotogrammetrici o LiDAR avrai già sentito questi acronimi.

Ma che cosa significano?

DTM sta per Digital Terrain Model (Modello Digitale del Terreno);

DSM sta per Digital Surface Model (Modello Digitale della Superficie – o delle superfici);

DEM sta per Digital Elevation Model (Modello Digitale di Elevazione).

LE SUPERFICI STATISTICHE

Lo scopo di questo articolo è quello di dirti le differenze tra i tre modelli ma non posso non aprire questa parentesi.
Sarò breve.

DTM e DSM, così come il DEM, sono superfici statistiche.

“Una superficie statistica è una rappresentazione della distribuzione dei valori di un determinato fenomeno definito, per ogni coppia di coordinate (X, Y), da un valore di Z, misurato o calcolato” (Robinson et al., 1995; DeMers, 1997).

Le superfici statistiche più facili da capire sono quelle che si riferiscono alla topografia terrestre: entità geografiche che cambiano nello spazio: l’elevazione, la quota piezometrica di una falda o la superficie di scorrimento profonda di una frana…

Ma ci sono altri esempi di superfici statistiche: la rappresentazione delle temperature o delle precipitazioni su un’area, la diffusione di inquinanti, i parametri socio-demografici ed economici…

L’aspetto importante di queste superfici è l’aggettivo che le qualifica: statistico.

Il termine statistico, associato al concetto di superficie, deriva dal fatto che questo tipo di rappresentazione si ottiene attraverso la stima del valore di una variabile dove non è stata fatta nessuna misura.
Le tecniche statistiche di stima si usano quando una variabile è calcolata in ogni punto di una superficie a partire da dati misurati solo in alcune posizioni.
Per calcolare i punti sconosciuti ci si affida a processi di interpolazione o estrapolazione.
L’interpolazione usa algoritmi che calcolano i punti incogniti da misure esistenti attorno ad essi.
L’estrapolazione invece stima le informazioni oltre il limite dei dati disponibili.

Non ti aggiungo altro sui metodi statistici che si usano in questi campi perchè non sarebbe di valore per gli scopi di questo post.
Ti porto solo due casi di superficie statistica.

Un modello digitale che rappresenta la profondità di una falda nel sottosuolo è una superficie continua generata statisticamente dalle letture localizzate dei piezometri nell’area di indagine.
L’andamento dell’elevazione di un versante è calcolata interpolando le misure topografiche di un numero finito di punti al suo interno.

“Chiusa parentesi“.

I MODELLI DIGITALI DI ELEVAZIONE

DTM, DSM e DEM sono confusi uno con l’altro.

Anche se possono sembrare simili sono in realtà pittosto diversi tra loro.

Alcune persone utilizzano indistintamente le tre sigle per riferirsi alla solita cosa.

Ma non è proprio così…

DEM

Il Modello Digitale di Elevazione (Digital Elevation Model) – DEM – è una generica superficie statistica in cui ad un numero finito di coppie (X,Y) viene attribuita un’elevazione, una Z, corrispondente..

Nell’uso comune il DEM è riferito alla topografia terrestre ma può riguardare anche altre superfici.
Ti ho scritto poco prima della superficie piezometrica di una falda o del piano di scorrimento profondo di una frana ma ci sono anche la superficie delle chiome degli alberi di un bosco, il top o il bottom di un orizzonte stratigrafico.

Nel caso di applicazione del concetto di DEM alla superficie del suolo c’è un po’ di confusione sulla sua definizione.
Anche in letteratura.

I diversi significati che le parole inglesi ground, height, elevation, terrain possono assumere non aiutano davvero a fare chiarezza.

Se poi oltre a DEM si parla anche di DTM e DSM ti lascio immaginare il risultato…

DTM e DSM

DTM e DSM non sono la stessa cosa!
Prenderne uno per l’altro può portare ad errori grossolani.

Te lo spiega bene l’immagine che ti metto qui sotto:

Immagine che riporta il confronto tra DTM e DSM

Con DSM (Digital Surface Model) si intende la superficie terrestre comprenstiva degli oggetti che ci stanno sopra: edifici, alberi ed altri manufatti.

Il DTM (Digital Terrain Model), rappresenta l’andamento della superficie del suolo senza gli elementi antropici e vegetazionli (gli oggetti che ti ho citato qui sopra).
Il DTM lo puoi trovare affiancato anche al termine bare earth (che vuol dire terra spoglia).

Capirai certamente che DTM e DSM sono piuttosto diversi uno dall’altro!

Qui sotto vedi in tratto nero continuo il DTM ed in tratto rosso tratteggiato il DSM.

Immagine che riporta il confronto tra DTM e DSM

DTM e DEM

Può capitare di leggere DEM e DTM con riferimento alla solita superficie.

Una parte della letteratura considera il DTM come un DEM a cui sono stati aggiunti particolari elementi morfologici (linee di scarpata e di impluvio, specchi d’acqua, …).
I DEM sarebbero quindi un sottoinsieme non interpretato dei DTM.
I DTM rappresenterebbero dunque la superficie terrestre in modo più naturale e accurato.

Un’altra interpretazione poi differenzia DTM e DEM in base alla struttura dei dati associando i DEM alla rappresentazione raster grid ed i DTM al dominio vettoriale, sotto forma di triangoli tridimensionali o punti nello spazio.
Masenza entrare nel merito di raster e vettori questa interpretazione crea, a mio avviso, ancora più confusione nell’utente medio non addetto ai lavori.

IN CONCLUSIONE

A conclusione di quello che ti ho scritto fino a qui ti dico come io interpreto i tre modelli digitali:

DEM – è un modello di elevazione generale che comprende DTM e DSM

DSM – è il modello che descrive l’andamento della superficie terrestre con gli oggetti che ci stanno sopra

DTM – è il modello della superficie terrestre filtrata dagli elementi antropici o vegetazionali

USARE DTM E DSM

I modelli digitali di elevazione (DEM) sono un dato sorgente potente e si usano in parecchie eleborazioni di analisi spaziale.
La maggior parte delle quali si può fare utilizzando un software GIS.

Ti elenco alcune applicazioni pratiche:

  • Elaborazione di carte di pendenza, curvatura ed esposizione dei versanti;
  • Generazione di profili topografici e curve di livello;
  • Analisi di visibilità;
  • Analisi volumetriche;
  • Analisi idrologiche e di geomorfologia fluviale;
  • Definizione delle carte di rischio (idraulico, geomorfologico, valanghivo, …)
  • Analisi vegetazionali e di uso del suolo;
  • Analisi di supporto alla pianificazione urbanistica e territoriale.

DTM E DSM IN PRATICA

Concludo questo articolo con un riferimento alle tecniche di rilievo usate dai topografia (avevo scritto un articolo sugli strumenti che si usano sul campo a questo link) avvicinandole a DTM e DSM.
Lascio stare il DEM che, per come lo intendo, include DTM e DSM.

STAZIONE TOTALE E GPS

Con una stazione totale puoi costruire un DTM stando attendo a battere punti che siano a terra.
Quindi niente palazzi!

Anche con i punti rilevatu da un ricevitore satellitare puoi fare un DTM.
Anche qui devi stare con l’asta del ricevitore rover, o il treppiedi dell’antenna, a terra.
Niente marciapiedi, pontili in legno e alzate di calcestruzzo.

(Qui un articolo sull’utilizzo del GPS nel rilievo topgrafico)

AERFOTOGRAMMETRIA E LiDAR

Nel rilievo aerofotogrammetrico ed in quello LiDAR (Laser Imaging Detection and Ranging), laser scanner, il rischio di male interpretaree DTM e DSM è maggiore…

Per il principio che sta alla base della fotogrammetra (informazioni da immagini) il dato grezzo che ottieni dall’elaborazione dei dati acquisiti è un DSM, un modello digitale della superficie, che ha dentro informazioni sul terreno, ma anche sugli alberi, edifici, tralicci, autovetture, …

Si può ottenere un DTM da un rilievo aerofotogrammetrico?
Sì ma non sempre.
Se gli elementi antropici e vegetazionali sono piuttosto isolati e le riprese fotografiche sono state fatte in modo accurato, si può filtrare la nuvola di punti per avere solo le informazioni sul terreno.
Se fai fare un volo aerofotogrammetrico sopra un bosco fitto ed esteso non puoi sperare di avere in output un DTM.

Immagine che riporta il confronto tra DTM e DSM

Da un rilievo LiDAR si può ricavare un DTM a condizione che lo strumento usato nelle misure possa registrare i diversi impulsi che provengono dai raggi laser riflessi da quello che incontrano.
Il primo impulso (first return) definisce il DSM, l’ultimo impulso (last return) il DTM.

Se un laser scanner è in grado di registrare solo il primo impulso è talvolta comunque possibile, con accorgimenti pratici durante il rilievo, fare più scansioni che permettano di acquisire informazioni ridondanti da usare per filtrare la nuvola di punti ed escludere gli elementi antropici o vegetazionali, ottenendo un DTM.

 

Spero che questo articolo ti abbia aiutato a fare chiarezza nelle differenze tra DTM, DSM e DEM.
Se pensi che possa essere di aiuto a qualche tuo collega mi fa piacere se vorrai condividerlo!

Per qualsiasi dubbio o chiarimento non esitare a contattarmi.

A presto!

Paolo Corradeghini

 

NOTA

I contenuti di questo articolo provengono, in parte, dal testo “GIS Open Source per geologia e ambiente – Analisi e gestione di dati territoriali con QGIS” di Valerio Noti, socio fondatore di Terre Logiche s.r.l.

 

Puoi ascoltare i contenuti di questo post anche in questa puntata del podcast di 3DMetrica!
[spreaker type=player resource=”episode_id=15113802″ width=”100%” height=”200px” theme=”light” playlist=”false” playlist-continuous=”false” autoplay=”false” live-autoplay=”false” chapters-image=”true” hide-logo=”false” hide-likes=”false” hide-comments=”false” hide-sharing=”false” ]

Se pensi che possa essere utile ad altri, condividilo!Share on Facebook
Facebook
Share on LinkedIn
Linkedin
Tweet about this on Twitter
Twitter
Email this to someone
email

Related posts:

  1. GEOREFERENZIAZIONE. CHI?!?!
  2. Un LIDAR ad alta risoluzione
  3. UNA FOTO DALL’ALTO NON E’ UN’ORTOFOTO
  4. I CODICI EPSG
cartografiademdsmDTMGISmodello digitale del terrenomodello digitale di superficiemodello ditigitale di elevazione
Share

CARTOGRAFIA

Paolo Corradeghini

You might also like

I SISTEMI DI RIFERIMENTO
27 Settembre 2018
COORDINATE GEOGRAFICHE E COORDINATE PIANE
6 Dicembre 2017
Georeferenziare un’immagine con QGIS
6 Novembre 2017

Lasciami un commento!

  • Commenta nel riquadro qui sotto
  • Commenta con Facebook

5 Comments


Massimo Micieli
28 September 2018 at 23:43
Reply

Ciao Paolo, leggo i tuoi articoli con molto interesse. in questo caso non colgo la reale differenza tra DSM e DEM, in quanto il DSM contiene anch’esso il DTM, per cui a mio modesto parere DSM e DEM sono la stessa cosa. Se non concordi chiariscimi la questione ovvero cosa contiene il DEM in più rispetto al DSM e viceversa. Grazie e complimenti per l’interessante blog. saluti Massimo Micieli.



    Paolo Corradeghini
    30 September 2018 at 14:29
    Reply

    Ciao Massimo, grazie per il tuo commento.
    In effetti hai ragione il DEM contiene il DSM.
    Il DEM è la denominazione generale dei modelli digitali di elevazione.
    Pensalo come un contenitore dove dentro trovi il DTM ed altri Modelli Digitali che possono servire per vari scopi.
    Mi viene in mente la modellazione idraulica dove è importante avere le informazioni del terreno nudo, rimuovendo gli alberi ma, in alcuni casi, mantenendo gli edifici che sono un oggettivo ostacolo al deflusso dell’acqua.
    Un modello digitale di questo tipo sta a metà tra un DTM e un DSM. Non è né il primo, perchè ci sono gli edifici, né l’altro, perchè hai tolto le piante e magari anche le automobili.
    Per non complicare troppo i contenuti dell’articolo ho proprio scelto di paragonare principalmente DTM e DSM.
    Spero di averti risposto in maniera sufficientemente esaustiva.
    Per altri dubbi non esitare a scrivermi.
    Ciao e a presto!
    Paolo

Fabrizio BINDI
22 September 2019 at 18:05
Reply

Direi di riepilogarlo in questo modo, con diverse tecniche è possibile ottenere un DEM, questo prodotto è un DSM in seguito con particolari operazioni si sottrae tutto ciò che è sopra la superficie terrestre E SI ottiene un DTM.
Quindi direi che sia il DSM che il DTM sono da considerarsi DEM.



Fabrizio BINDI
22 September 2019 at 18:10
Reply

Ciao Paolo,
Direi di riepilogarlo in questo modo, con diverse tecniche è possibile ottenere un DEM, questo prodotto è un DSM che se lo si desidera con particolari operazioni gli si sottrae tutto ciò che è sopra la superficie terrestre E SI ottiene un DTM.
Quindi direi che sia il DSM che il DTM sono da considerarsi DEM.



    Paolo Corradeghini
    11 October 2019 at 18:59
    Reply

    Ciao Fabrizio,
    direi che la tua sintesi è perfetta!
    🙂
    Grazie!
    Paolo

  • EBOOK – Pensieri topografici del 2020

    Ebook-pensieri-topografici-2020
  • CHI SONO

    Paolo Corradeghini immagine profilo
    Paolo Corradeghini, ligure, classe 1979, ingegnere per formazione, topografo di professione, sportivo per necessità e fotografo per passione. Fai click sulla mia faccia e scopri qualche informazione in più.
  • SE VUOI PUOI SUPPORTARMI

    Diventa finanziatore di 3DMetrica

    Se quello che pubblico e che condivido è interessante ed è qualcosa di valore per te, per il tuo lavoro e per la tua attività, puoi scegliere di supportare il progetto di 3DMetrica diventandone finanziatore.
    Clicca sull'immagine qui sopra per avere più informazioni.
  • VUOI ISCRIVERTI ALLA NEWSLETTER?

    Ti prometto che riceverai una sola email alla settimana.
    Salvo qualche (rara) eccezione...
    Una volta alla settimana ti scrivo i post che pubblico quotidianamente sui miei canali social network, ti metto il link all'ultimo articolo del blog (sperando di farcela a scriverne uno ogni settimana!) ed anche il link per ascoltare la nuova puntate del podcast di 3DMetrica.
  • C’È IL CANALE TELEGRAM!

    Iscriviti al canale Telegram di 3DMetrica dove, ogni giorno, condivido aggiornamenti, informazioni, contenuti, notizie, novità e dietro le quinte del mio lavoro.
    In amicizia e senza formalità!
    ISCRIVITI QUI!
  • CERCA NEL BLOG

  • PUOI SEGUIRMI SU INSTAGRAM…

    tredimetrica

    Fotogrammetria terrestre e da drone, laser scanner 3D, topografia e rilievi, formazione e docenze, cartografia, operatore e pilota droni.

    3DMetrica
    Non è detto che quello che ti serva sia un'ortofo Non è detto che quello che ti serva sia un'ortofoto di una facciata.
Potresti correggere la distorsione prospettica con software di fotoritocco e "raddrizzare" l'immagine (per i tuoi scopi).

Il punto di presa e la forma dell'oggetto fotografato deformano la rappresentazione secondo una vista prospettica.
Linee parallele nella realtà (muri verticali) sono convergenti nello spazio immagine.

Tutti i principali software di photoediting hanno strumenti di correzione della prospettiva.
Ci sono nel famoso Photoshop, nell'open source Gimp e nel "nuovo" ed economico Affinity Photo.

Funzionano più o meno nel solito modo.
Intervieni sulle immagini alterando i pixel e, aiutato da una griglia virtuale, allinei gli elementi dell'immagine alla maglia.
È veloce e non richiede hardware super.

La posizione reciproca tra punto di presa ed oggetto fa molto.
Così come la forma di quello che hai fotografato è rilevante.

È diverso dal fare un'ortomosaico.
Così come è diverso dall'usare, in campo, un obiettivo basculante e decentrabile ("tilt/shift") per le foto.
Ma è piuttosto pratico e può funzionare ugualmente.

Dopo tutto il raddrizzamento delle foto del costruito è una tecnica che gli architetti usano da parecchio tempo.
😉
    Se non puoi fare a meno di parcheggiare la tua aut Se non puoi fare a meno di parcheggiare la tua auto al di fuori dell'area del rilievo, vale la pena fare attenzione a dove la posteggerai.
Non è uno scherzo!
:)

La fotogrammetria è una tecnica passiva e gli algoritmi Structure from Motion riescono a ricostruire solo quello che si vede nelle immagini.
Un'automobile è un elemento di disturbo, neppure troppo piccola.
Può nascondere informazioni importanti o potrebbe essere difficile da togliere dalla nuvola di punti.

Parcheggiarla in un'area pianeggiante, su una superficie omogenea è una buona idea.
I motivi sono (almeno) due.

Il primo è che puoi facilmente ritoccare le fotografie dove è presente in modo da rimuoverla.
Software di fotoritocco hanno strumenti molto efficienti!
Può richiedere un po' di tempo (dipende dal numero di foto) ma il risultato è generalmente buono.
Qui sotto vedi un "prima" ed un "dopo" fotoritocco.

ll secondo motivo è che, se non ritocchi le foto, l'auto sarà un elemento isolato nella nuvola di punti che "emerge" dal terreno.
Questo ti permette di trattarla velocemente ed efficaciemente per rimuoverla, tenendo solo i punti del terreno.

Se la parcheggi a ridosso del piede di una parete di roccia non sarà immediato fare le cose che ho scritto qui sopra.
    Droni e missioni di volo automatiche - Attenzione Droni e missioni di volo automatiche - Attenzione ai modelli di elevazione a larga scala

Non prendere "a scatola chiusa" e senza controllare i modelli digitali di elevazione che si usano per la pianificazione automatica delle missioni di volo per droni.
Possono esserci differenze importanti (talvolta enormi) con la realtà.

Una missione di volo per aerofotogrammetria andrebbe eseguita mantenendo il più possibile costante la distanza "drone-terreno".
Se lavori lungo pendii o terreni inclinati è possibile farlo usando software di mission planning che caricano al loro interno dei modelli di elevazione a cui si riferiscono per impostare l'altezza del drone in volo.

A meno di usare modelli ad hoc, che hai fatto tu e su cui sei confidente, i modelli di riferimento sono a larga scala e non riescono a definire bene le caratteristiche locali.
Spesso non sono aggiornati.

Nella prima foto vedi uno screenshot di Google Earth Pro (in cui ho attivato l'opzione "Terreno 3D") per un'area di cava in cui dovevo fare un rilievo con APR.
Sembrerebbe un pendio acclive, ma regolare.

La seconda invece è una foto presa in volo, che mostra come sono realmente le cose.
Lo sperone di roccia stacca dal pendio circa 50-60 metri.
Un piano di volo automatico non lo avrebbe considerato...
    Se ricevi una nuvola di punti di un alveo e devi f Se ricevi una nuvola di punti di un alveo e devi fare una modellazione idraulica, puoi estrarre le sezioni che ti servono in totale autonomia.
Mi piace dire spesso che "la nuvola di punti crea (in)dipendenza".

Hai a disposizione dati densi (punti molto vicini) e continui, da cui tirare fuori quello che ti serve, secondo le tue necessità e sensibilità.
È mooolto diverso rispetto ad avere un numero finito di sezioni, fatte di punti discreti, battuti con strumenti terrestri.

Con gli strumenti di interrogazione delle nuvole che mette a disposizione Potree (codice open source per condividere nuvole di punti tramite browser) si possono fare sezioni.
Se la fai abbastanza sottili puoi esportare un file CSV delle coordinate dei punti della sezione.
Oltre all'indicazione della terna x,y,z,per ogni punto hai anche la progressiva ("mileage").
Estraendo solo la progressiva e la quota hai i dati per creare una sezione 2D.

Ci puoi fare una polilinea in CAD, o puoi importare le coordinate in HEC-RAS (software di modellazione idraulica) ed avere immediatamente una sezioni su cui far girare il modello.

Se vedi che manca qualcosa, puoi tornare sul modello 3D ed estrarre una nuova sezione, immediatamente.
In modo indipendente.
    Gli algoritmi di estrazione automatiche delle cara Gli algoritmi di estrazione automatiche delle caratteristiche di una nuvola di punti riescono ad estrarre i punti del terreno da tutto il resto.
Ma non sono infallibili.

Molto lo fa il tipo di nuvola trattata (fotogrammetrica, laser scanner o lidar).
E tanto fa anche l'elemento modellato (una facciata verticale, un versante mediamente pendente vegetato o un parcheggio piatto e vuoto).

Può capitare che vengano classificati come terreno dei punti che, con il terreno, non ci azzeccano niente.

Si possono ritoccare manualmente, editando la nuvola localmente, per raffinare la classificazione, oppure si può provare ad usare qualche filtro di pulizia automatica del rumore.

Uno che funziona bene è l'SOR (Statistical Outlier Removal) e lo trovi nella maggior parte dei software di editing (Lidar360 e Cloud Compare ce l'hanno).

La classificazione dei punti del terreno produce una nuvola piuttosto "rada" (rispetto all'originale) dove gli "outliers" si vedono bene e sono facilmente identificabili.

Attenzione alle zone di bordo.
Lì potrebbero andare via anche i punti "buoni" che, non avendo nessun dato da una parte, vengono identificati come sporco.

Da qui dovresti avere un dato più pulito per continuare la classificazione precisa.
    Si parla tanto del famigerato "Bonus 110%". Non en Si parla tanto del famigerato "Bonus 110%".
Non entro nel merito della materia urbanistica né di quella economica, perchè non le conosco.
Faccio alcune considerazioni sui rilievi.

Progettare una riqualificazione energetica ha spesso bisogno di un rilievo che supporti le scelte per fare il "salto energetico": nuovo cappotto termico, manutenzione del tetto, pannelli fotovoltaici, infissi...

In un condominio grande, un rilievo 3D dà informazioni utili e misurabili, in modo molto efficace e veloce.

Integrare il laser scanner con la (aero)fotogrammetria da drone permette di avere un modello completo, anche delle parti invisibili da terra.

Il rilievo dello stato attuale è anche utile per sanare abusi o difformità che rischiano di vanificare tutto l'iter...

Mi sento di consigliarti professionisti che conoscano bene il mondo dei rilievi con output 3D, la topografia ed i principi della misura.
E, per fortuna, ce ne sono tanti!

Scegli qualcuno che si prenda la responsabilità del dato restituito (firmandoti un documento tecnico).
Sembra poca cosa (non lo è) ma se le cose non vanno bene, può fare la differenza.

Questa manovra sta scuotendo un po' anche il mondo dei rilievi applicati all'edilizia.
Ed è una buona cosa!
👍🏻😉
    RILIEVI E STRUMENTI - LE BATTERIE NON FINISCONO MA RILIEVI E STRUMENTI - LE BATTERIE NON FINISCONO MAI!

Condivido alcuni pensieri sulle batterie, necessarie a far funzionare tutto quanto.

Faccio una lista delle batterie/dispositivi che ho caricato, sto caricando e dovrò ancora caricare (non per vanto ma per gli scopi del post):
- drone principale e radiocomando;
- drone di backup e radiocomando;
- stazione totale e laser scanner (per fortuna sono integrati) + controller;
- GNSS 1 e controller;
- GNSS 2 e controller;
- fotocamera digitale;
- fotocamera 360°;
- tablet per sorvolo con drone;
- battery pack per eventuali bisogni in campo;
- walkie talkie.

Sono davvero tante!

E da qui faccio tre considerazioni.

1.
Prima di partire per un rilievo in campo, prenditi il tempo necessario per ricaricare tutte le batterie.
Potrebbe non essere poco.

2.
Se prevedi di alloggiare fuori per più giorni, attrezzati per ricaricare tutto in modo efficiente.
Portati prese multiple e "ciabatte".
Spesso le prese negli hotel non sono tante...
Se sei all'estero, ricordati gli adattatori!

3.
Se viaggi in aereo informati bene sulle batteria che trasporti e su dove possono stare in volo (le batterie LiPo dei droni non possono viaggiare in stiva)

4.
Fanne buona manutenzione...
    È importante fare i conti con il trasporto della È importante fare i conti con il trasporto della strumentazione in campo o un rilievo potrebbe trasformarsi in un incubo.

Quello che dovresti considerare è la logistica generale:
- che tipo di rilievo si deve fare;
- quali strumenti usare e da portare in campo;
- treppiedi, aste, paline, target ed altri accessori;
- come si arriva in campo (accesso carrabile);
- se si deve camminare un po' (e, aggiungo, su quale superficie e con eventuali dislivelli).

Potresti essere tentato di "portare tutto, che non si sa mai", ma se poi il tutto lo devi trasportare a mano può essere un problema (e, a volte, neppure piccolo).

La portabilità di uno strumento topografico incide poco sul suo prezzo, ma molto sulla praticità.
Se la custodia rigida di una stazione totale ha l'opzione di essere trasportata come uno zaino ti libera completamente le mani che puoi usare per altre cose.
Non è leggera ma la schiena è forte!
:)

E se ti servono più cose di quelle che riesci a trasportare allora ti serve anche un aiuto in campo.

Tutte questi aspetti li puoi valutare e decidere dopo un sopralluogo.
È il modo migliore per rendersi conto di come sono davvero le cose e di che cosa ti servirà in campo.
Oltre che capire meglio il lavoro da fare!
    Le tecniche "structure from motion" ricostruiscono Le tecniche "structure from motion" ricostruiscono modelli 3D, anche molto dettagliati, di oggetti a partire da immagini

Condivido alcune considerazioni sul tema!

1
(Se puoi) muovi l'oggetto, non la camera.
Metti la macchina fotografica su supporto stabile e ruota l'oggetto su se stesso.
Ci sono "piatti rotanti" economici e funzionali.
Non vale con tutto, ma se puoi fallo...
📷

2
Mettiti in una situazione di luce controllata e riempi le ombre. 💡
Le luci da studio (continue o flash) sono ideali perchè annullano le intromissioni di altre fonti.
Usarne più di una (o, in alternativa, dei pannelli riflettenti) riempie le ombre.

3
Usa un "green screen" o uno sfondo da cui l'oggetto "stacchi". 
In fase di elaborazione userai delle maschere, lo schermo verde permette uno scontorno veloce.

4
Attento al colore. 🔺
Se devi ricostruire con cura anche le tonalità cromatiche controlla i rimbalzi di luce dallo sfondo sul soggetto ed usa un colorimetro per essere sicuro della corrispondenza dei colori riprodotti.

5
Uccidi i riflessi. ☀️
Superfici lucide + luci artificiali = riflessi.
Puoi eliminarli cambiando direzione di incidenza della fonte luminosa.

6
Non dimenticare le misure. 📐📏
Se il modello 3D deve avere valenza metrica servono le misure per scalarlo.
Prendile!
😁😉
    In questi giorni sto lavorando alla vettorializzaz In questi giorni sto lavorando alla vettorializzazione della nuvola di punti da rilievo fotogrammetrico + laser scanner che ho fatto in cava nei mesi estivi.
È un lavoro lungo che amo poco (e trovo poco utile) ed allora condivido alcuni pensieri sul tema.

Passare da una nuvola 3D ad un disegno 2D significa lasciare per strada un sacco di informazioni del dato originale.
E non sono più recuperabili (se non con difficoltà).

Serve un cambio di paradigma per lavorare, tutti, direttamente sul 3D.
I primi passi dovrebbero farli le Amministrazioni che richiedono piante, prospetti e sezioni per valutare progetti e piani.
Il secondo è dei tecnici che commissionano/ricevono i rilievi: dovrebbero ed inserire il 3D nel proprio flusso di lavoro.
All'inizio non sarà semplice, servirà tempo e qualche software "nuovo", ma dopo la strada sarà in discesa.

Un rilievo 3D costa meno se non viene richiesta la produzione di un disegno 2D.
Se l'oggetto è complesso ci possono volere molte ore per fare il lavoro.
Ore che dovranno essere pagate.

Un progetto in 3D, condiviso su schermo attraverso browser o visualizzatori semplici ed intuitivi, sarebbe molto più efficace di interpretare disegni, per quanto completi.
E si risparmierebbe carta!

Non si può generalizzare.
Quello che ho scritto non è applicabile a tutto.
Ma a tanto credo di sì.
Temo che ci voglia "un po'" di tempo.

Se vuoi condividere con me la tua opinione puoi scrivermi @paolocorradeghini ed io la ricondivido qui sul Canale, per tutti.
    Il GSD (Ground Sampling Distance) è un parametro Il GSD (Ground Sampling Distance) è un parametro molto importante nel processo fotogrammetrico.

Dipende direttamente dalla distanza "D", tra sensore e soggetto fotografato, dalla dimensione del pixel "d" ed inversamente dalla lunghezza focale, "f", dell'ottica.
GSD = (D x d) / f

Più il GSD è piccolo è più dettagli ci sono nell'immagine.
È come se stendessi a terra un lenzuolo, dove sopra c'è l'immagine stampata e che copre l'intera area fotografata e misurassi quanto vale, in campo, il lato di un pixel.

La scelta del GSD influenza l'accuratezza, il numero dei punti delle nuvole, la risoluzione del DEM e dell'ortofoto.

Spesso l'unico parametro su cui si ha il controllo "effettivo" in campo, per modificare il GSD, è la distanza di presa.

Qui ho scattato fotografie da drone ad una breve distanza (10 m) perchè era necessario riprodurre un'ortofoto di dettaglio che consentisse di identificare la posizione delle pietre della passeggiata, per rimetterle, al posto giusto, dopo averle levate per manutenzioni.

Un GSD alto non avrebbe dato sufficiente informazioni alle foto.
Uno basso sì.

Un GSD bassissimo non è però l'obiettivo da ricercare sempre.
A parità di area infatti, il numero di foto per coprirla aumenta parecchio.
    Puoi creare un DEM (Modello Digitale di Elevazione Puoi creare un DEM (Modello Digitale di Elevazione) da una nuvola di punti 3D con il software open source Cloud Compare.

Non è l'unico modo per farlo.
Si può fare anche in un software di elaborazione fotogrammetrica ("structure from motion") o in un GIS (visti i vari aggiornamenti che permettono di gestire le nuvole di punti).
Ma questo è un modo che uso spesso!

Cloud Compare ha un tool che si chiama "Rasterize".

Scegli:
la risoluzione del DEM (la lunghezza del lato di ogni pixel, quadrato, come se fosse misurata a terra);

la direzione di proiezione (è comune la "Z" ma potresti generare un DEM proiettando la nuvola su una parete verticale per vedere se ci sono rigonfiamenti, spanciamenti o altre anomalie);

che cosa fare con le celle vuote (interpolarle, riempirle con un valore specifico, lasciarle vuote, ...).

Una vola creato, lo vedi in anteprima nella finestra dello strumento.

Lo puoi esportare in formato GeoTIF (mantiene le coordinate dei punti della nuvola, anche se non è ufficialmente associato a nessun sistema di riferimento specifico EPSG).

Oppure puoi creare un nuvola di punti dove ogni nuovo punto corrisponde al centro di ogni pixel che forma il modello raster.

Così sei passato dal 3D al 2D.
O meglio, al 2.5D!
😉
    Avere a disposizione una nuvola di punti (georefer Avere a disposizione una nuvola di punti (georeferenziata e scalata) permette di creare punti, selezionandoli tra tutti quelli che la compongono e portarli in un ambiente 2D (CAD o GIS).

Ci sono alcune strade da seguire.
La scelta dipende da come è fatta la nuvola di punti e dall'output che si vuole ottenere.

In un software di gestione di nuvole di punti (Cloud Compare, Lidar360, ...) si può sottocampionare la nuvola chiedendo che in output i punti siano distanziati di un distanza regolare (1, 2, 5 m...).
Li puoi esportare in DXF e trasformarli in punti quotati.

Se il modello 3D è complesso può essere più indicato selezionare direttamente i punti da esportare "snappando" proprio sui punti della nuvola.

Cloud Compare ha l'opzione "Point List Picking" che crea una lista di punti dalla selezione.
Funziona bene, non ha limiti di numero, dopo un po' rallenta ed ogni punto ha associata un'etichetta (a volte un po' vistosa).

Trimble Business Center è molto fluido ed i punti che aggiungi sono "discreti" all'interno della nuvola generale.
Puoi lavorare direttamente al suo interno per creare etichette e customizzare l'output del file vettoriale.

In ogni caso, "battere" un migliaio di punti è questione di mezz'ore e non di giorni!
    I dati cartografici, scaricabili dai vari geoporta I dati cartografici, scaricabili dai vari geoportali regionali (o nazionali), non sono (quasi) masi super dettagliati ed a volte sono poco aggiornati.
Però si possono usare per creare un ambiente 3D in cui inserire l'output di un rilievo (fotogrammetrico o laser scanner).

In questo caso ho usato i dati Lidar (maglia 2x2m) scaricati da "Geoscopio" (portale cartografico della Toscana) per collegare tra loro due rilievi 3D di altrettante zone di cava, situate sullo stesso versante ma un po' troppo lontane da giustificare un unico rilievo.

È evidente l'assenza di colore nei punti della fascia centrale. Tuttavia l'orografia e la morfologia del versante non è cambiata nel tempo ed il dato è utile (non avrebbe avuto senso se lì ci fosse stata una cava attiva) e credo che aiuti a comprendere meglio la disposizione reciproca delle cave rilevate.

In mancanza di un dato Lidar si potrebbe usare un DEM (meglio se DTM), per creare una nuvola di punti regolare in ambiente GIS.
Con QGIS non è difficile.

Serve fare attenzione ai sistemi di riferimento del dato scaricato e del rilievo restituito.
Ed alle quote.
Se tutto torna, le nuvole di punti si sistemeranno correttamente, una rispetto all'altra, e le cose funzioneranno bene.
    Credo che ci siano almeno due strade diverse per p Credo che ci siano almeno due strade diverse per passare da un dato 3D ad uno 2D.

1.
Puoi generare un'ortofoto e ripassarne gli elementi in un CAD 2D.
È abbastanza veloce, comodo e non necessita di hardware super potente.
Ma se l'area è complessa o l'immagine non sufficientemente dettagliata, potrebbe non bastare.
Per maggiore precisione puoi lavorare sull'ortofoto confrontando in tempo reale quello che stai facendo con il modello 3D (nuvola di punti).

2.
Puoi lavorare direttamente nel 3D tramite software che ti permettono di gestire la nuvola di punti che vuoi vettorializzare.
È un po' più lungo (dipende dalla tua esperienza) ma ti permette di lavorare in un ambiente molto più versatile per fare zoom, "battere" punti virtuali e tracciare vettori.

P.S.
Opinione personale: passare da una nuvola di punti 3D ad una rappresentazione 2D "piante/prospetti/sezioni" è un po' come andare a pesca con una rete a trama grande: qualcosa rimane ma la maggior parte lo lasci in mare.

P.P.S.
Non ho ancora trovato software o algoritmi in grado di (semi)automatizzare il processo di vettorializzazione.
Non è banale ma credo che sia un territorio dove potrà esserci uno sviluppo interessante in futuro.
Per ora c'è ancora tanto da fare a mano...
    Il comando "Cloud to Cloud Distance" del software Il comando "Cloud to Cloud Distance" del software Cloud Compare calcola la distanza lineare tra i punti di due nuvole 3D.
È utile se vuoi vedere, nel tempo, le differenze di altezza in un'area di scavo o di accumulo.

È un comando semplice e lo trovi tra i menù principali.

Devi selezionare le due nuvole di punti da confrontare.
Scegli quale nuvola sarà il riferimento per il calcolo e quale quella su cui invece il calcolo verrà fatto.

Lo strumento ha varie opzioni.
Funzionano più o meno bene in relazione al tipo di nuvola di punti che stai usando.

Una volta finito il calcolo, nei punti della nuvola "mobile" vengono scritte delle informazioni scalari ("scalar field") che dettagliano i risultati del calcolo.

Nell'area di lavoro (in ambiente 3D) puoi avere una visuale d'insieme delle aree cambiate.

Se vuoi essere ancora più specifico puoi interrogare le coordinate di ogni punto, per leggere le singole distanze.

Oppure puoi creare un modello digitale di elevazione, DEM, da portare in altri software.

Infine, cosa molta utile per valutare le differenze di quota, puoi calcolare le distanze relative sui tre assi: x, y e z.
Se le nuvole di punti che confronti sono georeferenziate nel solito sistema di riferimento è tutto molto veloce!
    Un ambito dove l'aerofotogrammetria da drone è mo Un ambito dove l'aerofotogrammetria da drone è molto efficiente è quello dei rilievi di strade, per delimitarne i bordi e/o le carreggiate.

L'ortofoto che si produce nel processo structure from motion può essere ripassata in CAD, per tracciarne i limiti.
Considerando il tempo necessario alle attività di campo e quello per vettorializzare gli elementi, il tutto risulta molto vantaggioso soprattutto per superfici grandi.

Immagini elaborate con molto dettaglio (valori bassi del GSD) permettono di creare ortomosaici con un sacco di informazioni e disegnare anche altri elementi come i pozzetti, le caditoie o le saracinesche.

Anche le quote che prendi dai punti della nuvola (densa), o da un modello digitale di elevazione ad alta risoluzione, possono aiutarti per capire le pendenze.
Non riesci arrivare ad accuratezze millimetriche, ma pochi centimetri si raggiungono.
E su grandi sviluppi sei in grado di capire, ad esempio, come si muove l'acqua sulla superficie.
    Scattare fotografie per un'elaborazione fotogramme Scattare fotografie per un'elaborazione fotogrammetrica durante tutta una giornata può dare problemi tonali nelle immagini.
E si ripercuotono sui prodotti in output.

Succede perchè la temperatura della luce del sole cambia.
Con cielo sereno si percepisce molto di più che non in condizioni nuvolose.
Se poi ci sono strutture o montagne che proiettano ombre, al mattino o al tramonto, è ancora peggio!

L'ortofoto ne risente e, per quanto i software SfM riescano a miscelare il colore finale, capita che l'output non sia gradevole.

Scattare foto in RAW aiuta.
Puoi elaborare gruppi di immagini nelle solite condizioni di illuminazione e modificarne, separatamente, il bilanciamento del bianco.

Se hai solo file JPG una strada percorribile è fare un po' di editing sull'ortofoto finale.
Photoshop, e altri software della solita specie, hanno ormai strumenti potenti ed efficaci per farlo.

Ok, perdi la georeferenziazione del file TIF, ma la puoi sempre ricreare tramite un GIS, e, probabilmente, lascerai per strada un po' di saturazione, ma il risultato dovrebbe essere migliore.

La cosa ideale sarebbe comprimere la presa fotografica nel minore slot di tempo.
A volte non è possibile e tocca fare come si può per riparare le cose (dopo).
    Seguire Instagram
    This error message is only visible to WordPress admins
    There has been a problem with your Instagram Feed.
  • ARGOMENTI

    CARTOGRAFIA EBOOK LAVORI PODCAST RILIEVI Senza categoria SOFTWARE STRUMENTI TOPOGRAFIA TUTORIAL
  • PAROLE CHIAVE

    3D 3dmetrica 5 terre aerofotogrammetria agisoft photoscan altimetria apr cartografia cloud compare cloudpoints coordinate curve di livello dissesto idrogeologico dji drone droni ellissoide fotografia Fotogrammetria geoide georeferenziare georeferenziazione GIS GPS GSD immagini laser scanner lidar mappa nuvola di punti photoscan quota rilievo rilievo aerofotogrammetrico rilievo con drone sapr sicurezza sistemi di riferimento software stazione totale structure from motion strumenti topografia tutorial uav



© Copyright Ing. Paolo Corradeghini 2021 - PIVA 01260880115

Questo sito o gli strumenti terzi utilizzati da questo sito usano cookie necessari al loro funzionamento ed utili alle finalità illustrate nella cookie policy. Chiudendo questo banner, scorrendo questa pagina, cliccando su un link o proseguendo la navigazione in altro modo acconsenti all'uso dei cookie. Se vuoi saperne di più o negare il consenso a tutti o ad alcuni cookie consulta la cookie policy. Leggi di più.