• BLOG
  • INFO
  • PARTNER
  • EBOOK
    • PENSIERI TOPOGRAFICI 2020
    • PENSIERI TOPOGRAFICI 2018-2019
  • SUPPORTAMI

CHE COSA DEVI SAPERE PER USARE UN GPS DI PRECISIONE

24 Novembre 2017
Fotografia di Paolo Corradeghini mentre rileva un punto con strumento GPS

Se sei interessato ad acquistare un GPS di precisione per il tuo lavoro, ma non sai molto bene come funziona, in che modo lo potresti usare e cosa fare una volta acquistato, provo a spiegartelo in questo articolo.

Per cominiciare ti do un’informazione con cui potrai “vantarti” tra i tuoi amici e colleghi: nel 2017 (ma già da un bel po’ di anni) usare il termine GPS per intendere il sistema di posizionamento satellitare è improprio!
GPS sta per Global Positioning System e si riferisce solo al sistema che usa i satelliti Americani.
Nello spazio, in orbita attorno alla Terra, ci sono anche i Russi (GLONASS), i Cinesi (BEIDOU), gli Indiani (IRNSS) e noi Europei (GALILEO).
Sta diventando un posto un po’ affollato!
Dopo un primo momento in cui c’erano solo Americani e Russi, e ciascuno di loro si curava dei propri satelliti, si è passati ad una condivisione delle informazioni e dei mezzi a vantaggio di tutti gli utilizzatori sulla Terra ed al lancio di parecchi nuovi satelliti da parte delle varie potenze mondiali.
Ora i nostri smartphone, i palmari da escursionismo e le antenne topografiche ricevono informazioni non solo dai satelliti americani ma anche dagli altri (non proprio tutti) in orbita intorno alla Terra.
E per questo non si dovrebbe parlare di GPS ma di GNSS (Global Navigation Satellite System).

Spiegone finito!
E comunque anch’io continuerò a chiamarlo GPS, nelle righe che seguono!
🙂

Questo articolo prediligerà la praticità al rigore.
Non me ne volere se sei già un topografo che conosce il funzionamento del GPS! Forse non ci troverai contenuti interessanti ed utili per il tuo lavoro.
Il mio obiettivo qui è dare informazioni a chi pensa che un ricevitore satellitare di precisione possa essere utile per il proprio lavoro, anche se non è un topografo full time, e vuole saperne qualcosa di più sul funzionamento operativo e pratico.

Ho preso molti spunti da questo ottimo testo: “Il GPS nello studio tecnico professionale” di Leonardo Gualandi – Hoepli Editore – un libro molto pratico e poco accademico!

Nelle note in fondo all’articolo ho messo un approfondimento recente, grazie al contributo di Giuseppe Scarpino.

IL POSIZIONAMENTO SATELLITARE

Anche se vorrei passare subito alla parte pratica non posso non spiegarti brevemente (spero!) come funziona il posizionamento satellitare.

Schema del principio di funzionamento del posizionamento GPSCalcolando il tempo che passa tra l’invio di un segnale da un satellite nello spazio e la sua ricezione da parte di un’antenna sulla terra si può sapere la posizione dell’antenna.
L’idea funziona ma da sola non basta.

PRINCIPIO GEOMETRICO

Un solo satellite vincola la posizione del ricevitore ad una sfera.

Due satelliti vincolano la posizione del ricevitore ad una circonferenza, intersezione delle due sfere.

Aggiungere un terzo satellite limita la posizione del ricevitore a due punti: quello effettivo ed un altro diametralmente opposto e quindi a spasso nello spazio.

Se è vero che tre sfere sono teoricamente sufficienti perchè si intersecano in due soli punti di cui uno può essere sicuramente scartato (per la sua posizione distantissima dalla superficie terreste) è anche vero che la ridondanza di misure aiuta, e di molto, l’accuratezza del dato rilevato.
Quindi “più ce n’è e meglio è!”.
Diciamo che il minimo sono quattro satelliti visibili dal ricevitore ma dato il numero di satelliti in orbita è normale ormai lavorare con 8-10 satelliti ben visibili!

PRINCIPIO FISICO

Il principio fisico su cui si basa la misura satellitare è davvero semplice:

velocità = distanza : tempo

da cui

distanza percorsa dal segnale satellitare = velocità della luce x tempo misurato

Il GPS è essenzialmente un orologio che misura il tempo che il messaggio impiega a raggiungere l’antenna ricevente da quando è stato trasmesso dal satellite.

La realtà è un po’ più complessa di così.

Ogni satellite invia un messaggio in codice predefinito, una sequenza di 0 ed 1, che il ricevitore legge come un codice a barre.
Immagina una parola che si ripete senza interruzione.
Quando un’antenna riceve il segnale dal satellite, legge il codice e sa a che punto è nell’intero messaggio.
In questo modo riesce a sapere il momento precisio in cui è stato trasmesso.
Tuttavia se ci si basasse sulla lettura del solo codice trasmesso dai satelliti gli errori sulla misura sarebbero troppo alti per gli scopi topografici (la velocità della luce è così alta che un errore nella misura del tempo di un milionesimo di secondo corrisponderebbe, più o meno, ad uno spazio di 300 metri!).
Si è passato quindi ad analizzare anche la lunghezza dell’onda elettromagnetica su cui viaggia il messaggio, contando il numero di onde intere che arrivano al ricevitore e misurando lo sfasamento che ne rimane.

Il sistema GPS fa quindi “misure di codice“, più veloci ma più approssimative, e “misure di fase“, più precise.
In questo modo si determina la posizione di un punto sulla superficie terrestre.

RICEVITORI A DOPPIA FREQUENZA

Se vuoi comprare un ricevitore GPS ad alta precisione e ne trovi uno usato, un po’ vecchiotto, assicurati che riesca a leggere almeno la doppia frequenza L1 e L2 (quelli nuovi lo fanno di default ed alcuni leggono anche la frequenza L5!). Questo non tanto per la precisione del risultato, quanto piuttosto per un processo che si chiama “risoluzione dell’ambiguità di fase“.
Non ti dico che cos’è, ti chiedo solo di fidarti di me ed acquistare un ricevitore che sia a doppia frequenza (almeno)!

POSIZIONAMENTO SINGOLO E DIFFERENZIALE: LA BASELINE

La teoria della propagazione del segnale dal satellite a terra non tiene conto del fatto che le onde elettromagnetiche non viaggiano nel vuoto ma attraversano l’atmosfera.
La velocità di propagazione cambia a seconda della densità degli strati in cui si muove.
Per questo motivo è impossibile contenere l’errore entro valori centimetrici nel misurare la posizione di un solo ricevitore sulla superficie terrestre.
Questo è il posizionamento singolo.

Usando invece due ricevitori su punti diversi, anche se le loro posizioni sono comunque affette dallo stesso errore, il vettore che li congiunge, la baseline, si riesce a rilevare con precisione.
Questo metodo di chiama posizionamento differenziale.

Concludo questa parte teorica introduttiva dicendoti che è possibile condurre misure topografiche di precisione con il sistema di posizionamento GNSS, a patto di avere a terra due ricevitori satellitari e misurare la distanza del segmento tra di loro.

QUANTO E’ PRECISO UN RILIEVO CON IL GPS

La precisione sulla posizione di un punto rilevato con il GPS, nei metodi attualmente più diffusi, è dell’ordine di qualche centimetro.
Il “quanti centimetri” è un valore variabile che dipende da quanti satelliti ci sono nel cielo, da come sono messi, da che cosa hai intorno…
Se speravi in una precisione millimetrica immediata, mi dispiace deluderti ma per questo la Stazione Totale resta ancora lo strumento più preciso!
Avevo scritto un articolo piuttosto generale sugli strumenti utilizzati dai topografi nei rilievi, con le relative precisioni
Lo trovi a questo link.

Tuttavia e sei spaventato dall’idea di dover acquistare non uno ma due GPS professionali (e quindi costosi!), non smettere di leggere perchè ci sono soluzioni alternative!

IL GPS SUL CAMPO

RTK

I testi accademici lasciano la modalità di uso RTK alla fine della trattazione sul posizionamento satellitare, dopo gli altri metodi altamente preferibili.
In questo articolo ti parlo invece subito di questo, perchè è il più semplice, il più immediato ed il più pratico!

R.T.K. sta per Real Tine Kinematic ed è un modo per conoscere la posizione di un punto istantaneamente, quasi senza fermarsi.
Prendendo in prestito il termine dalla Fisica, con “cinematico” si dà l’idea di movimento, in contrapposizione all’immobilità di un rilievo “statico“, di cui ti parlo dopo.

L’RTK è un metodo di posizionamento differenziale che usa due ricevitori contemporaneamente.
Un ricevitore è fermo su un punto e si chiama Base, l’altro ricevitore si muove sui punti da battere, e si chiama Rover.
Forse ne hai sentito parlare come sistema “base-rover” (immagine qui sotto ©Carlson Benchmark AZ).

Immagine che rappresenta l'uso del GPS in modalità RTK con Base e Rover

I due ricevitori si scambiano dati usando un segnale GSM telefonico o una trasmissione radio.
Conoscendo la posizione, sempre fissa, della base, il software di bordo del ricevitore applica le stesse correzioni al rover e ne determina la posizione.

Nell’RTK, oltre alla coppia di ricevitori (ed ai relativi treppiedi ed aste di supporto), serve anche un controller collegato all’antenna Rover, in modo che l’operatore, che se ne va in giro a misurare, può facilmente battere i punti, controllare che cosa sta succedendo, sapere se la base ed il rover comunicano bene, vedere quanti satelliti ci sono in cielo e come sono messi nella volta celeste, conoscere le precisioni sulle misure…
Il controller è un dispositivo palmare o un tablet con un software di bordo specifico.

POST-ELABORAZIONE

Oltre all’RTK (anzi, dovrei dire, prima dell’RTK) ci sono metodi di uso del GPS che prevedono una post-elaborazione in ufficio dei dati presi sul campo.
Pur essendo un po’ più scomodi, lunghi e meno immediati dell’RTK (perchè non conosci immediatamente la tua posizione), sono quelli che permettono di ottenere i migliori risultati sull’affidabilità della posizione dei punti rilevati.

STATICO

Il metodo statico prevede di lasciare il ricevitore fermo su un punto ad acquisire i dati dai satelliti per un po’ di tempo.
Quanto tempo?
L’ordina di grandezza è quello dell’ora, anche se non è proprio preciso metterla in questo modo.
La durata del tempo di acquisizione è funzione della misura della baseline.

I satelliti nello spazio non sono geostazionari ma si muovono su orbite.
Fanno circa due giri in ventiquattro ore.
Ad ogni istante ciascun satellite occupa una posizione diversa, ma nota.
Lasciando il ricevitore in acquisizione per tanto tempo succede che ciascun satellite genera più sfere (quelle dello schema dei paragrafi teorici) con cui si possono fare molteplici intersezioni per determinare la posizione del ricevitore.

Le precisioni ottenute con questo tipo di acquisizione sono sub-centrimetriche!

STATICO-RAPIDO

Il metodo statico-rapido si basa sul solito principio del metodo statico ma i tempi di occupazione su ciascun punto sono più brevi (dell’ordine del quarto d’ora).
Il metodo statico-rapido permette di ottenere ottimi risultati in termini di precisione dei punti, anche per valori del vettore baseline di vari chilometri.

Lo statico-rapido può venire in prezioso aiuto ad un rilievo RTK quando non è possibile stabilire una connessione solida tra Base e Rover!

LA POST-ELABORAZIONE

Nel metodo statico ed in quello statico-rapido il procedimento che si fa per calcolare la posizione di un punto è sempre quello di misura della baseline, il vettore che unisce due ricevitori a terra.
Tuttavia in questi casi, a differenza del metodo RTK, i due ricevitori non sono in collegamento tra loro.
La post-elaborazione prevede infatti, una volta rientrati in ufficio, di scaricare i dati registrati dalle antenne e, tramite appositi software, si determinano le posizioni mettendo in correlazione le misure acquisite sul campo.

Sono sempre necessari due ricevitori GPS per il posizionamento di alta precisione.

RETI DI STAZIONI PERMANENTI

Fino ad ora hai parlato di coppia di ricevitori GPS ma io non il budget per comprare due antenne! Mi avevi promesso una soluzione, qual è?
Veramente ti avevo parlato di possibilità alternative ad utilizzare una coppia di ricevitori!
Una è il noleggio di un secondo ricevitore ma siccome credo che ti aspettassi qualcosa di diverso da questa risposta, passo all’altra soluzione che è quella di appoggiarsi ad una rete di stazioni fisse sul territorio.

Non è necessario che entrambe i ricevitori GPS per misuare la baseline siano di tua proprietà.
Quello dei due che sta fisso sul territorio può anche essere di qualcun altro, l’importante è che tu possa avere accesso ai dati che registra (per i metodi che richiedono la post-elaborazione) o che tu possa metterlo in contatto con il tuo ricevitore Rover, in un rilievo RTK.

Mappa delle stazioni GPS della Rete Smartnet ItalposQuesto fatto ha portato all’istituzione di tantissime stazioni GPS fisse nel territorio italiano, utilizzabili dagli operatori durante le loro operazioni sul campo o in ufficio.
In alcuni casi il servizio è gratuito in altri è a pagamento (immagini ©Smartnet Italpos).

Se tu hai un solo ricevitore GPS e vuoi fare un rilievo in modalità RTK puoi “agganciarti” alla base fissa più vicina e fare le misure.
Il collegamento Base-Rover avviene tramite rete telefonica GSM.

Ma c’è di più, le stazioni fisse possono fare rete e permettere un particolare posizionamento che si chiama NRTK (Network Real Time Kinematic).Schema del funzionamento di una rete di stazioni permanenti e rover in modalità RTK
Una rete NRTK è un insieme di stazioni GNSS permanenti i cui dati si usano per fare delle correzioni che vengono inviate poi al tuo ricevitore Rover sul campo. Queste correzioni sono elaborate da un centro di calcolo e si chiamano correzioni RTK di rete.

DOMANDE E RISPOSTE

Fino a qui ti ho parlato di come funziona il posizionamento GPS.
So che potrebbe non essere stato il massimo dell’interesse ma non ne avrei potuto fare a meno.
In questa parte conclusiva provo a darti informazioni più pratiche in forma di “domanda-risposta”.

Il GPS funziona al chiuso?
No. Il GPS non funziona al chiuso.
Il GPS deve vedere i satelliti nel cielo per fare il suo lavoro e, quindi, non funziona bene neppure in un bosco fitto e potrebbe faticare parecchio in una via cittadina con palazzi alti a destra e a sinistra.

Posso fare un rilievo GPS di notte?
Sì. I satelliti non dormono e la trasmissioine del segnale non necessita di luce, quindi il rilievo lo puoi fare anche al buio.

In modalità RTK è meglio utilizzare una comunicazione radio o GSM?
Se ti appoggi alle basi fisse usando un solo ricevitore in modalità rover non puoi fare altro che utilizzare una comunicazione GSM.
Se hai due ricevitori sotto il tuo controllo puoi scegliere di usare anche la tramissione radio.
Le frequenze radio sono più limitate sulla distanza (oltre i 5 km potresti faticare mentre una rete GSM non ha limiti in questo senso) ma lavorano anche in assenza di copertura telefonica.
Se scegli la via del telefono ti consiglio di prendere almeno due schede GSM, di altrettanti operatori diversi, per aumentare le possibilità di avere segnale e permettere la comunicazione base e rover.
Se base e rover non comunicano l’unico modo che hai per portare a casa il lavoro è passare ad un rilievo statico-rapido e fare la post-elaborazione dei dati in ufficio.

Quanto costa un ricevitore GPS di precisione?
Sul prezzo di un ricevitore GPS si apre un ventaglio davvero ampio.
Le caratteristiche e le marche dei modelli sul mercato influiscono sul loro costo (quante costellazioni vedono, quanti canali di comunicazione hanno, …).
Immagine di un GPS Geomax Zenith 20Io ti posso dire che utilizzo un ricevitore Geomax Zenith 20 che vede le costellazioni GPS, GLONASS e BEIDOU e l’ordine di grandezza del prezzo per l’antenna + supporto + controller è di circa 6.000 € (non prendo soldi dalla Geomax!).
Sappi però che se sei in modalità RTK, hai un ricevitore super moderno e costoso che dialoga con i satelliti della rete GPS, GLONASS, BEIDOU e GALILEO ma la base a cui ti appoggi vede solo i satelliti GPS, potrai fare affidamento solo su quelli per il calcolo del posizionamento.

Ho sentito parlare della rete Italpos. Che cos’è?
Italpos è un servizio di proprietà di Leyca Geosystems che offre la correzione delle misure per il posizionamento in RTK con basi fisse in tutto il territorio nazionale.
Il servizio ha un costo di 300€ all’anno e ti consente di lavorare in NRTK con un’ottima copertura del territorio e la possibilità di scaricare i dati per il post-processamento nelle modalità statico e statico-rapido.
Tutte le regioni hanno basi fisse sul territorio. Alcune permettono di utilizzarne i dati gratuitamente (qui vicino a me ci sono la Liguria, la Lombardia, il Piemonte) mentre altre offrono un servizio a pagamento. Informati sul tipo di servizio che la tua Regione offre, prima di decidere come lavorerai. Io lavoro spesso al confine tra tre regioni (Liguria, Emilia Romagna e Toscana) ed ho preferito usare il servizio di Italpos.

Che coordinate usa il GPS?
Il GPS rileva la posizione con riferimento all’ellissoide WGS84, i dati grezzi che ti fornisce sono pertanto latitudine, lngitudine e quota ellissoidica. Dovrai trasformare questi dati nel Sistema di Riferimento che intenderai usare, così come dovrai trasformare la quota da ellissoidica a geoidica (avevo scritto un articolo sul “problema della quota” che trovi a questo link).
Per trasformare le coordinate io uso il software dell’IGM Verto3K con i grigliati di trasformazione locali (file GK2).
La licenza permanente su chiave USB di Verto3K costa circa 300€.
I grigliati costano invece 50€ per quelli che si riferiscono ad un intorno di 10km dal caposaldo IGM di riferimento e 100€ per gli interi fogli al 25.000.
Una volta acquistato un grigliato lo puoi riusare tutte le volte in cui ne avrai necessità.

Sono quasi deciso a prendere un GPS, posso iniziare con uno solo?
Io direi di sì. Inizia con un ricevitore solo ed usalo in modalità RTK appoggiandoti alle base fise sul territorio nazionale.
La copertura telefonica è in continuo miglioramento e nella maggior parte dei casi dovresti riuscire a mettere in comunicazione la base con il rover.
Se però sai già che lavorerai nelle aree di distacco delle valanghe, in mezzo a gole montane profonde o in zone remote forse è il caso di attrezzarti con due ricevitori da usare in base+rover.
Anche se prima te l’ho detto a mo’ di battuta, non scartare l’ipotesi di un noleggio temporaneo di un altro ricevitore compatibile con il tuo, da un collega o da un rivenditore locale specializzato.

 

Spero di averti dato informazioni utili per aiutarti a capire se e come utilizzare un ricevitore GPS nel tuo lavoro.
Ci sono tanti altri aspetti tecnici che non ho approfondito ma se hai domande o dubbi non esitare a scriverli nei commenti.

A presto!

Paolo Corradeghini

 

APPROFONDIMENTO

Un paio di settimane dopo aver pubblicato questo articolo (qui e su LinkedIn) ho ricevuto un messaggio da Giuseppe Scarpino che mi sottoponeva una sua nota tecnica sulle equazioni matematiche che stanno alla base del posizionamento satellitare.

Nonostante questo articolo sia decisamente semplice e dedicato ad un lettore non esperto di GPS, ho pensato che potesse essere interessante aggiungere il contributo di Giuseppe se tu volessi andare oltre a quello che ho scritto ed approfondire la fisica e la matematica che ci stanno dietro!

Puoi scaricare la nota a questo link.

GIUSEPPE SCARPINO

Giuseppe Scarpino è Capo Squadra Esperto in servizio nella Direzione Regionale dei Vigili del Fuoco della Calabria.
E’ Dottore in Scienze Naturali e la sua conoscienza sui sistemi satellitari deriva proprio dall’esperienza diretta sul campo in quanto si occupa, tra le altre cose, di telerilevamento con tecniche satellitare, georeferenziazione e mappatura degli incendi boschivi.

Grazie per il tuo contributo Giuseppe e per aver acconsentito a condividerlo!

 

Ti segnalo alcune puntate del podcast dove si parla proprio di GNSS e posizionamento di precisione:

[spreaker type=player resource=”episode_id=16411551″ width=”100%” height=”200px” theme=”light” playlist=”false” playlist-continuous=”false” autoplay=”false” live-autoplay=”false” chapters-image=”true” episode-image-position=”right” hide-logo=”false” hide-likes=”false” hide-comments=”false” hide-sharing=”false” hide-download=”true”]

[spreaker type=player resource=”episode_id=16482578″ width=”100%” height=”200px” theme=”light” playlist=”false” playlist-continuous=”false” autoplay=”false” live-autoplay=”false” chapters-image=”true” episode-image-position=”right” hide-logo=”false” hide-likes=”false” hide-comments=”false” hide-sharing=”false” hide-download=”true”]

[spreaker type=player resource=”episode_id=16530664″ width=”100%” height=”200px” theme=”light” playlist=”false” playlist-continuous=”false” autoplay=”false” live-autoplay=”false” chapters-image=”true” episode-image-position=”right” hide-logo=”false” hide-likes=”false” hide-comments=”false” hide-sharing=”false” hide-download=”true”]

[spreaker type=player resource=”episode_id=19667521″ width=”100%” height=”200px” theme=”light” playlist=”false” playlist-continuous=”false” autoplay=”false” live-autoplay=”false” chapters-image=”true” episode-image-position=”right” hide-logo=”false” hide-likes=”false” hide-comments=”false” hide-sharing=”false” hide-download=”true”]

 

E qui trovi la registrazione di un Webinar fatto insieme a Tiziano Cosso sul processing dei dati grezzi con il software open source RTK Lib:

Se pensi che possa essere utile ad altri, condividilo!Share on Facebook
Facebook
Share on LinkedIn
Linkedin
Tweet about this on Twitter
Twitter
Email this to someone
email

Related posts:

  1. AEROFOTOGRAMMETRIA SU TERRENI INCLINATI
  2. FOTOGRAMMETRIA CON LO SPARK
  3. STRUMENTI PER LA FOTOGRAMMETRIA TERRESTRE
  4. DRONI: UNA MISSIONE DI VOLO AUTOMATICA CON THOPOS E LITCHI
antenna satellitareGNSSGPSrilievorilievo con GPSsatellitistrumenti
Share

STRUMENTI

Paolo Corradeghini

You might also like

MONITORAGGIO E CONSIDERAZIONI SUL TEMA
4 Maggio 2022
TRASPORTARE UNA QUOTA CON LA STAZIONE TOTALE
31 Gennaio 2022
Test e prove strumentali
14 Luglio 2021
  • CERCA NEL BLOG

  • CHI SONO

    Paolo Corradeghini immagine profilo
    Paolo Corradeghini, ligure, classe 1979, ingegnere per formazione, topografo di professione, sportivo per necessità e fotografo per passione. Fai click sulla mia faccia e scopri qualche informazione in più.
  • Paolo Corradeghini

    Topografia, rilievi, droni, gps, cartografia, geomatica e mappe.
    Condivido aggiornamenti, informazioni, contenuti, notizie, novità e dietro le quinte del mio lavoro.

    Paolo Corradeghini
    YouTube Video UCi7FWlZ8-gdWbBqScaODajw_CmBQ8Bc7PX0 In questo video condivido come puoi esportare e importare "cose" da e in Google Earth Pro.
C'è la possibilità di esportare una mappa, inserendo testo, titolo e legenda, tutto in formato immagine.
O puoi fare la stessa cosa "stampando" un PDF.
E poi si può importare un sacco di file di formati diversi, inclusi i dati georeferenziati.


Qui ci sono gli altri video legati a Google Earth Pro:
Parte 1 - Il software: https://youtu.be/Zm947ElLV8E
Parte 2 - Impostazioni e coordinate:  https://youtu.be/QdAgCxpr9MU
Parte 3 - Misure https://youtu.be/ligAaNM2CdA
Parte 4 - KML (e KMZ): https://youtu.be/H_4OqBe3MK4
Parte 5 - Cronologia e Google Street View: https://youtu.be/E9_a9Neu-Zk
Parte 6 - Import/Export: https://youtu.be/CmBQ8Bc7PX0


Se pensi che questo video possa essere utile anche a qualcuno che conosci puoi condividerglielo.
Ne sarei felice.

Se hai dubbi, domande, richieste specifiche su procedure, comandi o modi di fare qualcosa scrivimi ed io ne prendo spunto per un altro video come questo.

Il modo più veloce per contattarmi è tramite Telegram @paolocorradeghini
Oppure trovi gli altri miei contatti li trovi sul blog di 3DMetrica: https://3dmetrica.it/

Se vuoi, puoi decidere di sostenermi diventando un finanziatore di 3DMetrica tramite la pagina di Patreon: https://www.patreon.com/3dmetrica
È grazie a chi supporta il progetto se posso fare questi video per tutti.


0:00 Intro
1:11 Intro
1:52 Esportare una vista come immagine
6:03 Stampa in pdf
9:54 Importare file
12:20 Outro
    In questo video condivido come puoi esportare e importare "cose" da e in Google Earth Pro.
C'è la possibilità di esportare una mappa, inserendo testo, titolo e legenda, tutto in formato immagine.
O puoi fare la stessa cosa "stampando" un PDF.
E poi si può importare un sacco di file di formati diversi, inclusi i dati georeferenziati.


Qui ci sono gli altri video legati a Google Earth Pro:
Parte 1 - Il software: https://youtu.be/Zm947ElLV8E
Parte 2 - Impostazioni e coordinate:  https://youtu.be/QdAgCxpr9MU
Parte 3 - Misure https://youtu.be/ligAaNM2CdA
Parte 4 - KML (e KMZ): https://youtu.be/H_4OqBe3MK4
Parte 5 - Cronologia e Google Street View: https://youtu.be/E9_a9Neu-Zk
Parte 6 - Import/Export: https://youtu.be/CmBQ8Bc7PX0


Se pensi che questo video possa essere utile anche a qualcuno che conosci puoi condividerglielo.
Ne sarei felice.

Se hai dubbi, domande, richieste specifiche su procedure, comandi o modi di fare qualcosa scrivimi ed io ne prendo spunto per un altro video come questo.

Il modo più veloce per contattarmi è tramite Telegram @paolocorradeghini
Oppure trovi gli altri miei contatti li trovi sul blog di 3DMetrica: https://3dmetrica.it/

Se vuoi, puoi decidere di sostenermi diventando un finanziatore di 3DMetrica tramite la pagina di Patreon: https://www.patreon.com/3dmetrica
È grazie a chi supporta il progetto se posso fare questi video per tutti.


0:00 Intro
1:11 Intro
1:52 Esportare una vista come immagine
6:03 Stampa in pdf
9:54 Importare file
12:20 Outro
    In questo video ti faccio vedere come si creano le curve di livello in QGIS.<br />Serve un rastrer, un modello digitale di elevazione.<br />E poi è piuttosto semplice.<br />Ti condivido il processo con un'attenzione alla possibilità di creare elementi con informazione di elevazione.<br /><br /><br />Se pensi che questo video possa essere utile anche a qualcuno che conosci puoi condividerglielo.<br />Ne sarei felice.<br /><br />Se hai dubbi, domande, richieste specifiche su procedure, comandi o modi di fare qualcosa scrivimi ed io ne prendo spunto per un altro video come questo.<br /><br />Il modo più veloce per contattarmi è tramite Telegram @paolocorradeghini<br />Oppure trovi gli altri miei contatti li trovi sul blog di 3DMetrica: https://3dmetrica.it/<br /><br />Se vuoi, puoi decidere di sostenermi diventando un finanziatore di 3DMetrica tramite la pagina di Patreon: https://www.patreon.com/3dmetrica<br />È grazie a chi supporta il progetto se posso fare questi video per tutti.<br /><br /><br />0:00 Intro<br />0:38 Un DEM in QGIS<br />2:38 Estrai le curve di livello<br />6:24 Le curve di livello generate<br />8:13 Sottocampionare un raster per curve più morbide<br />11:26 Offset alle curve<br />12:08 Esporto le curve di livello<br />14:20 Outro
    Dentro Lidar360 c'è la possibilità di creare un modello tridimensionale a partire da un modello digitale di elevazione.
La differenza con un modello 3D a triangoli (il "LiTin") sta nella sua genesi ma soprattutto nella sua possibilità di editing e sistemazione generale.
Te lo condivido in questo video.


Qui ci sono i video di questo percorso in Lidar360:
01 - I controlli sulla nuvola di punti: https://youtu.be/jo2HEHeA3tM
02 - Pulisco la nuvola da "outliers" e rumore: https://youtu.be/HltISGTxM90
03 - Da quota ellissoidica a quota ortometrica: https://youtu.be/HsUYNBFLqdw
04 - Ritaglia la nuvola di punti: https://youtu.be/Ycno8uW8ea4
05 - Classifica automaticamente i punti del terreno: https://youtu.be/D6HUYywrpno
06 - Affino la classificazione automatica: https://youtu.be/Prpgx7-2pOY
07 - Controllare il terreno con il modello TIN: https://youtu.be/Adx-jTTVS6w
08 - Infittire i punti del terreno ed estrarli dalla nuvola generale: https://youtu.be/SR207WpzIvU
09 - Modello 3D a facce triangolari TIN: https://youtu.be/ztH_RI9iVhU
10 - Curve di livello: https://youtu.be/TzYQQ52bXgI
11 - Classificare gli edifici ed aggiustare la classificazione con il "Profile Tool": https://youtu.be/X5QJJYyjjTk
12 - Classificare elementi specifici (macchine e linee elettriche) in una nuvola di punti: https://youtu.be/Gyy8UZdkLFI
13 - Classificare per attributi: https://youtu.be/BcKt4moEJWE
14 - Importa un ortomosaico e gestisci le viste: https://youtu.be/2I2vbkweiP8
15 - Vector Editor: https://youtu.be/qibsQNP3ZQ4
16 - Crea un DTM riempiendo i buchi del terreno: https://youtu.be/-DA9esFvdLo
17 - Lavorare con il modello "LiModel": https://youtu.be/S21h7F0K_b0


Questa serie è fatta in collaborazione con   @lidaritalia  (https://www.lidar-italia.it/) con cui portiamo avanti un bel po' di attività di studio, analisi e test sui sistemi Lidar (da drone e da terra) e sui software di  @GreenValleyINTL   (https://greenvalleyintl.com/).
È grazie a loro se posso condividere questi contenuti!


Se pensi che questo video possa essere utile o interessante anche a qualcuno che conosci puoi condividerglielo.
Se hai dubbi, domande, richieste specifiche su procedure, comandi o modi di fare qualcosa fammelo sapere che io ne prendo spunto per un altro video di questa serie.
Scrivilo nei commenti.
Oppure mandami un messaggio su Telegram @paolocorradeghini


0:00 Intro
1:12 Lidar360
2:28 Che cos'è un modello TIN
2:58 Convert TIF to LiModel
4:40 Il LiModel
6:03 L'editor del LiModel
13:04 Salvare le modifiche
14:45 Outro


Trovi altri informazioni su di me qui: https://3dmetrica.it/

Se vuoi, puoi decidere di sostenermi diventando un finanziatore di 3DMetrica tramite la pagina di Patreon: https://www.patreon.com/3dmetrica
    In questo video voglio condividere con te come utilizzare il plugin "Ellipse marking" del software Cloud Compare per portarci dentro un ortomosaico (dopo averlo trasformato in nuvola di punti, piatta).


Se pensi che questo video possa essere utile anche a qualcuno che conosci puoi condividerglielo.
Ne sarei felice.

Se hai dubbi, domande, richieste specifiche su procedure, comandi o modi di fare qualcosa scrivimi ed io ne prendo spunto per un altro video come questo.

Il modo più veloce per contattarmi è tramite Telegram @paolocorradeghini
Oppure trovi gli altri miei contatti li trovi sul blog di 3DMetrica: https://3dmetrica.it/

Se vuoi, puoi decidere di sostenermi diventando un finanziatore di 3DMetrica tramite la pagina di Patreon: https://www.patreon.com/3dmetrica
È grazie a chi supporta il progetto se posso fare questi video per tutti.


0:00 Intro
1:18 Una piccola nuvola in Cloud Compare
2:25 Prendo una misura di riferimento preliminare
3:49 Il plugin Ellipse Marking
6:09 L'ortofoto trasformata in nuvola di punti
6:56 Trasporto l'ortomosaico sotto la nuvola 3D
13:10 Outro
    Dentro il software di fotogrammetria Agisoft Metashape si possono classificare i punti di una nuvola di punti 3D.
In questo video ti faccio vedere che cosa viene fuori usando gli algoritmi automatici di classificazione del terreno.


Se hai dubbi, domande, richieste specifiche su procedure, comandi o modi di fare qualcosa scrivimi ed io ne prendo spunto per un altro video come questo.

Il modo più veloce per contattarmi è tramite Telegram @paolocorradeghini
Oppure trovi gli altri miei contatti li trovi sul blog di 3DMetrica: https://3dmetrica.it/

Se vuoi, puoi decidere di sostenermi diventando un finanziatore di 3DMetrica tramite la pagina di Patreon: https://www.patreon.com/3dmetrica
È grazie a chi supporta il progetto se posso fare questi video per tutti.


0:00 Intro
0:53 Entro in Metashape
3:16 Gli strumenti per gestire le classi di una nuvola
4:11 Classificare i punti del terreno
11:31 Guardo i risultati
12:10 Filtrare le classi
13:30 Reset classification
14:05 Outro
    In questo ti condivido alcuni step per passare da un modello 3D (in Cloud Compare) ad una rappresentazione 2D.
Faccio riferimento all'ambiente CAD, pechè è quello in cui sono più confidente, ma si potrebbero seguire altre strade ed altri strumenti.
Spero comunque di riuscire a darti informazioni utili.


Questo video, e tutti gli altri di questa serie, esiste grazie al Gruppo Naturalistico Montelliano - http://www.gnmspeleo.it/

Ecco i video della serie:
EP01 - Scarica ed installa Cloud Compare: https://youtu.be/UiGda9FTct4
EP02 - L'area di lavoro di Cloud Compare: https://youtu.be/_Tdzv0ZaKsg
EP03 - Importa una nuvola (LAS) e applica una traslazione globale: https://youtu.be/CbTiTv3Qafw
EP04 - Elimina parti che non ti interessano (strumento di Segmentazione): https://youtu.be/aLAmh4tJUpY
EP05 - Salvare un progetto in Cloud Compare in formato BIN: https://youtu.be/02iuRsgPKaw
EP06 - Sezioni dinamiche: https://youtu.be/udvvyoHB9cM
EP07 - Trova i limiti planimetrici di una nuvola: https://youtu.be/Xo-DvdjRMQo
EP08 - "Scoperchia" una nuvola di punti, separando pavimento e soffitto: https://youtu.be/eunYw58c4Bk
EP09 - Misurare una nuvola di punti: https://youtu.be/XH9nLfm78J4
EP10 - Colorare una nuvola con le informazioni della quota: https://youtu.be/A8p0ZmsCvi8
EP11 - Creare una polilinea: https://youtu.be/faYyQvHLqrI
EP12 - Sezioni trasversali: https://youtu.be/ciincbrKWxA
EP13 - Profilo longitudinale di una miniera: https://youtu.be/Ur_Var3SDXE
EP14 - Sviluppo longitudinale di una miniera: https://youtu.be/nMQ5RZN-nHQ
EP15 - Costruire un DEM: https://youtu.be/zn_faKHsE58
EP16 - Curve di livello: https://youtu.be/5RH-Ag-kSgA
EP17 - Allineare due nuvole di punti: https://youtu.be/PQS7reeSIaU
EP18 - Aumentare la densità dei punti della nuvola: https://youtu.be/aOKU_Bcokbk
EP19 - Crea un'animazione della nuvola: https://youtu.be/oDB1AUlw68s
EP20 - Pulire la "doppia pelle": https://youtu.be/SEu4tYLi82o
EP21 - Dal 3D al 2D: https://youtu.be/R2bImzWw0Cs


Se pensi che questo video possa essere utile o interessante anche a qualcuno che conosci puoi condividerglielo.
Se hai dubbi, domande, richieste specifiche su procedure, comandi o modi di fare qualcosa fammelo sapere che io ne prendo spunto per un altro video di questa serie.
Scrivilo nei commenti.
Oppure mandami un messaggio su Telegram @paolocorradeghini


0:00 Intro
2:43 Un esempio di mappa di grotta
4:03 Cloud Compare
7:43 DEM e curve di livello
10:25 Creare l'ingombro dell'area
13:23 Esportazione in DXF
14:50 Apro i DXF in CAD
17:58 Creare una "pseudo-ortofoto"
28:45 Aggiungo punti quotati
35:48 Creo un profilo longitudinale
46:00 Le sezioni trasversali
52:20 Outro


Trovi altri informazioni su di me qui: https://3dmetrica.it/

Se vuoi, puoi decidere di sostenermi diventando un finanziatore di 3DMetrica tramite la pagina di Patreon: https://www.patreon.com/3dmetrica
    Dentro Google Earth Pro c'è la possibilità di vedere immagini aeree del passato, attraverso lo strumento della cronologia.
Te lo condivido in questo video, dove ri parlo anche del "famoso" Google Street View.


Qui ci sono gli altri video legati a Google Earth Pro:
Parte 1 - Il software: https://youtu.be/Zm947ElLV8E
Parte 2 - Impostazioni e coordinate:  https://youtu.be/QdAgCxpr9MU
Parte 3 - Misure https://youtu.be/ligAaNM2CdA
Parte 4 - KML (e KMZ): https://youtu.be/H_4OqBe3MK4
Parte 5 - Cronologia e Google Street View: https://youtu.be/E9_a9Neu-Zk
Parte 6 - Import/Export: https://youtu.be/CmBQ8Bc7PX0


Se pensi che questo video possa essere utile anche a qualcuno che conosci puoi condividerglielo.
Ne sarei felice.

Se hai dubbi, domande, richieste specifiche su procedure, comandi o modi di fare qualcosa scrivimi ed io ne prendo spunto per un altro video come questo.

Il modo più veloce per contattarmi è tramite Telegram @paolocorradeghini
Oppure trovi gli altri miei contatti li trovi sul blog di 3DMetrica: https://3dmetrica.it/

Se vuoi, puoi decidere di sostenermi diventando un finanziatore di 3DMetrica tramite la pagina di Patreon: https://www.patreon.com/3dmetrica
È grazie a chi supporta il progetto se posso fare questi video per tutti.


0:00 Intro
1:57 La cronologia
7:51 Google Street View
13:37 Outro
    Puoi modificare il file del database associato ad uno shapefile attraverso l'editing diretto del file .dbf attraverso un  foglio di calcolo.
Te lo condivido in questo video.


Se pensi che questo video possa essere utile anche a qualcuno che conosci puoi condividerglielo.
Ne sarei felice.

Se hai dubbi, domande, richieste specifiche su procedure, comandi o modi di fare qualcosa scrivimi ed io ne prendo spunto per un altro video come questo.

Il modo più veloce per contattarmi è tramite Telegram @paolocorradeghini
Oppure trovi gli altri miei contatti li trovi sul blog di 3DMetrica: https://3dmetrica.it/

Se vuoi, puoi decidere di sostenermi diventando un finanziatore di 3DMetrica tramite la pagina di Patreon: https://www.patreon.com/3dmetrica
È grazie a chi supporta il progetto se posso fare questi video per tutti.


0:00 Intro
1:21 Importo dei punti in QGIS
3:01 Aggiungere campi ad uno shapefile
4:30 Apro il database con OpenOffice
5:20 Aggiungo informazioni
8:12 Aggiorno lo shapefile in QGIS
9:27 Outro
    Capita spesso che in una nuvola di punti, anche se Lidar ed anche se classificata, ci siano dei buchi nei punti del terreno.<br />Puoi creare un DTM interpolando le informazioni dove mancanti oppure puoi ricreare informazioni vettoriali e tridimensionali (punti) prima di elaborare il modello digitale di elevazione.<br /><br />In questo video ti faccio vedere il tool "Simulate Ground Points" (simula i punti del terreno) del software Lidar360 che crea punti che non modificano la nuvola originale ma che possono essere usati per creare un DTM continuo e senza buchi.<br /><br /><br />Qui ci sono i video di questo percorso in Lidar360:<br />01 - I controlli sulla nuvola di punti: https://youtu.be/jo2HEHeA3tM<br />02 - Pulisco la nuvola da "outliers" e rumore: https://youtu.be/HltISGTxM90<br />03 - Da quota ellissoidica a quota ortometrica: https://youtu.be/HsUYNBFLqdw<br />04 - Ritaglia la nuvola di punti: https://youtu.be/Ycno8uW8ea4<br />05 - Classifica automaticamente i punti del terreno: https://youtu.be/D6HUYywrpno<br />06 - Affino la classificazione automatica: https://youtu.be/Prpgx7-2pOY<br />07 - Controllare il terreno con il modello TIN: https://youtu.be/Adx-jTTVS6w<br />08 - Infittire i punti del terreno ed estrarli dalla nuvola generale: https://youtu.be/SR207WpzIvU<br />09 - Modello 3D a facce triangolari TIN: https://youtu.be/ztH_RI9iVhU<br />10 - Curve di livello: https://youtu.be/TzYQQ52bXgI<br />11 - Classificare gli edifici ed aggiustare la classificazione con il "Profile Tool": https://youtu.be/X5QJJYyjjTk<br />12 - Classificare elementi specifici (macchine e linee elettriche) in una nuvola di punti: https://youtu.be/Gyy8UZdkLFI<br />13 - Classificare per attributi: https://youtu.be/BcKt4moEJWE<br />14 - Importa un ortomosaico e gestisci le viste: https://youtu.be/2I2vbkweiP8<br />15 - Vector Editor: https://youtu.be/qibsQNP3ZQ4<br />16 - Crea un DTM riempiendo i buchi del terreno: https://youtu.be/-DA9esFvdLo<br /><br /><br />Questa serie è fatta in collaborazione con   @lidaritalia  (https://www.lidar-italia.it/) con cui portiamo avanti un bel po' di attività di studio, analisi e test sui sistemi Lidar (da drone e da terra) e sui software di  @GreenValleyINTL   (https://greenvalleyintl.com/).<br />È grazie a loro se posso condividere questi contenuti!<br /><br /><br />Se pensi che questo video possa essere utile o interessante anche a qualcuno che conosci puoi condividerglielo.<br />Se hai dubbi, domande, richieste specifiche su procedure, comandi o modi di fare qualcosa fammelo sapere che io ne prendo spunto per un altro video di questa serie.<br />Scrivilo nei commenti.<br />Oppure mandami un messaggio su Telegram @paolocorradeghini<br /><br /><br />0:00 Intro<br />1:25 La nuvola di punti in Lidar360<br />2:05 Generare un DTM<br />3:43 I buchi del DTM<br />4:40 Simulate ground points<br />11:10 Rigenero il DTM usando il nuovo file<br />12:00 Guardo i risultati<br />13:56 Outro<br /><br /><br />Trovi altri informazioni su di me qui: https://3dmetrica.it/<br /><br />Se vuoi, puoi decidere di sostenermi diventando un finanziatore di 3DMetrica tramite la pagina di Patreon: https://www.patreon.com/3dmetrica
    C'è un plugin in Cloud Compare che si chiama "Virtual Broom" - scopa virtuale - è ti permette di pulire il rumore (ma non solo quello) di una nuvola di punti come se fosse una scopa che pulisce una superficie.


Se pensi che questo video possa essere utile anche a qualcuno che conosci puoi condividerglielo.
Ne sarei felice.

Se hai dubbi, domande, richieste specifiche su procedure, comandi o modi di fare qualcosa scrivimi ed io ne prendo spunto per un altro video come questo.

Il modo più veloce per contattarmi è tramite Telegram @paolocorradeghini
Oppure trovi gli altri miei contatti li trovi sul blog di 3DMetrica: https://3dmetrica.it/

Se vuoi, puoi decidere di sostenermi diventando un finanziatore di 3DMetrica tramite la pagina di Patreon: https://www.patreon.com/3dmetrica
È grazie a chi supporta il progetto se posso fare questi video per tutti.


0:00 Intro
0:57 Una nuvola di punti con un po' di rumore
2:03 Il plugin "Virtual Broom"
9:45 I risultati della pulizia
10:53 Uso il plugin per togliere la vegetazione
13:03 La scelta dei punti di rumore
13:52 Outro
    La ricostruzione fotogrammetrica di alberi privi di foglie (tipico della stagione invernale) può essere un problema per un software structure from motion.
In questo video ti condivido l'esperienza in Agisoft Metashape.
E provo a vedere come poter gestire dati di questo tipo

I contenuti di questo valgono per Metashape e, forse, per altri software commerciali di fotogrammetria.
Probabilmente algoritmi più avanzati e codici customizzati riescono ad ottenere risultati migliori di questi...


Se hai dubbi, domande, richieste specifiche su procedure, comandi o modi di fare qualcosa scrivimi ed io ne prendo spunto per un altro video come questo.

Il modo più veloce per contattarmi è tramite Telegram @paolocorradeghini
Oppure trovi gli altri miei contatti li trovi sul blog di 3DMetrica: https://3dmetrica.it/

Se vuoi, puoi decidere di sostenermi diventando un finanziatore di 3DMetrica tramite la pagina di Patreon: https://www.patreon.com/3dmetrica
È grazie a chi supporta il progetto se posso fare questi video per tutti.


0:00 Intro
1:24 Metashape
3:26 Nuvole di punti di un caso pratico
5:30 Le mappe di profondità
9:28 Un altro modello problematico
10:03 Nuvola densa in qualità più scarsa
11:43 Scattare a quota maggiore
11:58 Creare la nuvola di punti dalla mesh
13:44 Outro
    Non sempre una nuvola di punti derivante da scansioni multiple in una grotta è ok ovunque.
A volte possono esserci problemi di sovrapposizione che creano un effetto di "doppia pelle".
In questo video ti condivido alcuni strumenti e metodi per provare a pulire l'output.


Questo video, e tutti gli altri di questa serie, esiste grazie al Gruppo Naturalistico Montelliano - http://www.gnmspeleo.it/

Ecco i video della serie:
EP01 - Scarica ed installa Cloud Compare: https://youtu.be/UiGda9FTct4
EP02 - L'area di lavoro di Cloud Compare: https://youtu.be/_Tdzv0ZaKsg
EP03 - Importa una nuvola (LAS) e applica una traslazione globale: https://youtu.be/CbTiTv3Qafw
EP04 - Elimina parti che non ti interessano (strumento di Segmentazione): https://youtu.be/aLAmh4tJUpY
EP05 - Salvare un progetto in Cloud Compare in formato BIN: https://youtu.be/02iuRsgPKaw
EP06 - Sezioni dinamiche: https://youtu.be/udvvyoHB9cM
EP07 - Trova i limiti planimetrici di una nuvola: https://youtu.be/Xo-DvdjRMQo
EP08 - "Scoperchia" una nuvola di punti, separando pavimento e soffitto: https://youtu.be/eunYw58c4Bk
EP09 - Misurare una nuvola di punti: https://youtu.be/XH9nLfm78J4
EP10 - Colorare una nuvola con le informazioni della quota: https://youtu.be/A8p0ZmsCvi8
EP11 - Creare una polilinea: https://youtu.be/faYyQvHLqrI
EP12 - Sezioni trasversali: https://youtu.be/ciincbrKWxA
EP13 - Profilo longitudinale di una miniera: https://youtu.be/Ur_Var3SDXE
EP14 - Sviluppo longitudinale di una miniera: https://youtu.be/nMQ5RZN-nHQ
EP15 - Costruire un DEM: https://youtu.be/zn_faKHsE58
EP16 - Curve di livello: https://youtu.be/5RH-Ag-kSgA
EP17 - Allineare due nuvole di punti: https://youtu.be/PQS7reeSIaU
EP18 - Aumentare la densità dei punti della nuvola: https://youtu.be/aOKU_Bcokbk
EP19 - Crea un'animazione della nuvola: https://youtu.be/oDB1AUlw68s
EP20 - Pulire la "doppia pelle": https://youtu.be/SEu4tYLi82o
EP21 - Dal 3D al 2D: https://youtu.be/R2bImzWw0Cs


Se pensi che questo video possa essere utile o interessante anche a qualcuno che conosci puoi condividerglielo.
Se hai dubbi, domande, richieste specifiche su procedure, comandi o modi di fare qualcosa fammelo sapere che io ne prendo spunto per un altro video di questa serie.
Scrivilo nei commenti.
Oppure mandami un messaggio su Telegram @paolocorradeghini


0:00 Intro
3:30 Cloud Compare
5:21 Lo strumento "Cross Section" per trattare i dati
10:18 Lavorare su ogni sezione
15:10 Unisco le sezioni pulite
16:50 Outro


Trovi altri informazioni su di me qui: https://3dmetrica.it/

Se vuoi, puoi decidere di sostenermi diventando un finanziatore di 3DMetrica tramite la pagina di Patreon: https://www.patreon.com/3dmetrica
    Load More... Subscribe
  • C’È IL CANALE TELEGRAM!

    Canale Telegrma 3DMetrica
    Iscriviti al canale Telegram di 3DMetrica dove, ogni giorno, condivido aggiornamenti, informazioni, contenuti, notizie, novità e dietro le quinte del mio lavoro.
    In amicizia e senza formalità!
    ISCRIVITI QUI!
  • SE VUOI PUOI SUPPORTARMI

    Diventa finanziatore di 3DMetrica

    Se quello che pubblico e che condivido è interessante ed è qualcosa di valore per te, per il tuo lavoro e per la tua attività, puoi scegliere di supportare il progetto di 3DMetrica diventandone finanziatore.
    Clicca sull'immagine qui sopra per avere più informazioni.
  • PUOI SEGUIRMI SU INSTAGRAM…

    tredimetrica

    La fine dell'anno e l'inizio del nuovo è tempo di La fine dell'anno e l'inizio del nuovo è tempo di rilievi nelle cave di estrazione...

#cave #rilievo #aerofogrammetria
    Trasportare drone e svariate batterie (12), in spa Trasportare drone e svariate batterie (12), in spalla, dentro uno zaino, è una cosa rilevante se devi fare un po' di strada a piedi.

Foto (tagliata malamente da me) di @davidemarcesini 

#drone #porto #fotoaeree #uav #apr #sapr
    Se il tuo Lidar è equipaggiato con una camera fot Se il tuo Lidar è equipaggiato con una camera fotografica per colorare la scansione e se puoi accedere alle immagini, le puoi usare per fare un progetto fotogrammetrico.

Non è detto che tu ci riesca.
La sovrapposizione laterale delle strisciate Lidar non è paragonabile a quella fotogrammetrica ma qui ho fatto un volo Lidar a griglia e i dati erano abbondanti.

A partire dai punti di legame, puoi fare la nuvola densa, mesh, texture e ortomosaico.

Credo che i prodotti che sfruttano le informazioni nelle immagini siano quelli più interessanti perchè complementari con il dato Lidar che non può arrivare a contenere le informazioni delle fotografie.

#lidar #fotogrammetria #rilievo #3d
    Capita che in un rilievo Lidar il drone voli a par Capita che in un rilievo Lidar il drone voli a partire da luoghi accessibili, lungo strade o aree poco distanti da parcheggi.
Nelle zone agricole le strade possono non essere pubbliche, anche se non ci sono cancelli o sbarre.

Credo che valga sempre la pena contattare la proprietà per informarla del lavoro.
Anche se prevedi di stare lontano da case, fattorie o altri insediamenti.
Il più delle volte si evitano possibili problemi o anche solo rallentamenti nella tabella di marcia della giornata.

Se poi ci sono delle greggi (e l'area è frequentata dal lupo) è normale che queste siano protette da cani pastori.
Il loro lavoro è proteggere le pecore.
Da chiunque.
Ti avvertono, abbaiando, se ti avvicini troppo.
Se vai oltre potrebbero fare anche qualcos'altro.

Valuta anche questo aspetto del lavoro.
Anche se il gregge è in un recinto, parcheggiare l'auto e lavorare troppo vicino potrebbe mandare in allerta/allarme i cani.
Meglio spostarsi un po' e lasciarli fare tranquilli il loro lavoro ma senza metterli sotto stress costante.

Se lì vicino c'è la fattoria e ti presenti alla proprietà potrebbero aiutarti gestendo i loro cani pastori in tua presenza e permettendoti di concentrarti solo sul tuo lavoro (senza dover controllare costantemente dove si trovano).

Per nessun motivo passerei vicino ad un gregge non recintato e custodito!

#rilievo #topografia #misure #cani #gregge #pastori #proprietàprivata
    È piuttosto normale (quando si parla di rilievi c È piuttosto normale (quando si parla di rilievi con drone) rilevare un'area maggiore rispetto ai limiti di progetto.
Questo perchè una macchina fotografica ed un Lidar (come in questo caso) hanno un angolo di campo del sensore e volando lungo il confine prendono informazioni anche dei punti esterni ad esso.

Inoltre si possono ottimizzare le missioni automatiche per far sì che (in andata o in ritorno) il drone passi su zone esterne continuando ad acquisire dati.

Qui in rosso ci sono i limiti di progetto di un rilievo Lidar ed in giallo le aree effettivamente acquisite (e con dati "buoni")

#lidar #rilievo #rilievo3d #realitycapture
    Il laser scanning è il modo migliore per creare m Il laser scanning è il modo migliore per creare modelli 3D di strutture reticolari: tralicci, ringhiere o strutture metalliche in generale...

Si può provare a creare delle nuvole di punti da fotogrammetria ma è dura (ed i motivi sono diversi...)

Il laser scanning, è invece molto performante.
Serve avere un po' di accortezza nel fare più stazioni di scansione, per coprire più punti di vista ed evitare le zone d'ombra.

L'altra valutazione da fare è relativa alla portata dello scanner.
I tralicci dell'alta tensione possono essere parecchio alti.
Questo misura 100m da terra.
Serve una portata sufficiente per arrivare, bene, fino in cima.
Se lo scanner è sufficientemente preciso, si riescono ad avere anche buone nuvole dei conduttori!

#3d #laserscanning #laserscanner #rilievo #tralicci
    Prima di partire con un rilievo sottoscrivi i limi Prima di partire con un rilievo sottoscrivi i limiti dell'area.
Può essere un allegato al contratto/offerta o qualcosa a parte.
L'importante è che sia chiaro.
A te e al cliente (se tu fai il rilievo).
A te e al topografo (se lo commissioni).

Sono tornato in campo per integrare un'area che avevo tralasciato.
La responsabilità era tutta la mia.
Non avevo fatto attenzione alle email scambiate con il committente.
Per fortuna era vicino a casa, è stato facile e veloce.
Ma ci sono comunque dovuto ritornare.

Allora ho riflettuto sull'importanza della chiarezza tra le parti prima di iniziare un lavoro.
Non si tratta di essere rigidi o pignoli.
È un modo per tutelare il lavoro di tutti.

Se sei tu a fare il rilievo non ti sentirai chiedere cose tipo: "Ah ma io credevo che saresti arrivato fino a là".

Se invece lo commissioni puoi stroncare sul nascere ogni fraintendimento per un'area che non ti viene restituita.

Non serve una planimetria con chissà quale dettaglio!
Va bene anche uno stralcio di mappa di Google.
L'importante è che sia chiaro e condiviso.

E più il rilievo è esteso/complesso/costoso, più è importante farlo.
    Se in terra c'è tanta polvere (ed in questo perio Se in terra c'è tanta polvere (ed in questo periodo siccitoso ce n'è davvero tanta!), trova il modo di far decollare il drone in un posto non troppo "sporco" e se puoi alzalo da terra.
Il rischio "desert storm" è altissimo, specialmente con droni grossi ed eliche montate sotto i bracci.

#drone #uav #rilievi #voli #fotogrammetria #sabbia #polvere
    Rilievi GNSS di punti di appoggio per un rilievo f Rilievi GNSS di punti di appoggio per un rilievo fotogrammetrico.

#rilievo #gnss #rtk #cava
    Carica di più... Seguire Instagram
  • EBOOK – Pensieri topografici del 2020

    Ebook-pensieri-topografici-2020
  • EBOOK – Pensieri topografici 2018-2019

    Ebook-pensieri-topografici-2020
  • ARGOMENTI

    CARTOGRAFIA DRONI EBOOK FOTOGRAMMETRIA LASER SCANNER LAVORI LIDAR PODCAST RILIEVI Senza categoria SOFTWARE STRUMENTI TOPOGRAFIA TUTORIAL
  • PAROLE CHIAVE

    3D 3dmetrica 5 terre aerofotogrammetria agisoft photoscan altimetria angoli apr cartografia cloud compare cloudpoints coordinate dem dissesto idrogeologico drone droni elaborazione fotografia Fotogrammetria GIS GNSS GPS GSD immagini laser scanner lidar misura misure nuvola di punti nuvole di punti ortofoto photoscan quota rilievo rilievo aerofotogrammetrico rilievo con drone sapr sistemi di riferimento software stazione totale structure from motion strumenti topografia tutorial uav



© Copyright Ing. Paolo Corradeghini 2021 - PIVA 01260880115