• BLOG
  • INFO
  • PARTNER
  • EBOOK
    • PENSIERI TOPOGRAFICI 2020
    • PENSIERI TOPOGRAFICI 2018-2019
  • SUPPORTAMI

DRONI E SICUREZZA 2 – DRONI E SISTEMI RADAR

10 Giugno 2018
Immagine che mostra le componenti del sistema di localizzazione radar di droni in volo

In questo si parla dell’aspetto della sicurezza legata ai droni approfondendo l’argomento dei sistemi radar in uso per la localizzazione dei mezzi aerei in volo.

Dopo il suo primo articolo “Droni e Sicurezza“, che trovi a questo link, Flavio Angoli è tornato a trovarmi nelle pagine di questo blog con un nuovo articolo sulla sicurezza dei droni.

Ed io non posso che esserne molto contento!

Ringrazio Flavio per il tempo che ha dedicato a scrivere il suo contributo e per averlo voluto, anche questa volta, condividere con me e con i lettori del blog.
Questo per me è un gesto molto bello, sia umano che professionale, e sono onorato di ricevere conttributi di valore, spontanei e disinteressati, da poter condividere in queste pagine, proprio come questo di Flavio a cui ti lascio!

DRONI E SISTEMI RADAR

In questo si parla dell’aspetto della sicurezza legata ai droni approfondendo l’argomento dei sistemi radar in uso per la localizzazione dei mezzi aerei in volo.

Nello scorso articolo ti ho parlato di rapporti ANSV, a grandi linee della pericolosità degli APR e della tecnologia Geo-Fencing.

Oggi voglio parlarti del sistema AeroScope introdotto da DJI e del sistema polacco Droneradar (con il sistema ADS-B) per il controllo e la sicurezza dei nostri cieli, visto il continuo incremento di vendite e il conseguente utilizzo di droni sia in ambito lavorativo, che in ambito ludico/sportivo.

Come ben sappiamo i droni ultimamente godono di un’attenzione maggiore rispetto a qualche anno fa.
Attenzione è il termine giusto che ha fatto suonare il campanello d’allarme a produttori di questa tipologia di mezzi e ai gestori del traffico aereo (sia in competenza legislativa che operativa).
La continua emergenza terroristica, che ha innalzato i livelli di guardia verso ogni mezzo che può possibilmente offendere, ha messo i droni sotto una speciale lente d’ingrandimento.

Anche la cronaca negli ultimi tempi non si è risparmiata nel descrivere incidenti, guasti o malfunzionamenti di droni che sono successivamente caduti in testa a persone, o recato comunque danni a cose.

AEROSCOPE DJI

Immagine che mostra le componenti del sistema DJI Aeroscope

DJI si è posta come uno degli attori principali per arginare il problema di ingressi non autorizzati in spazi aerei controllati/zone segregate/no fly zone etc.

Come abbiamo visto nel precedente articolo con la tecnologia Geo-fencing ora la casa cinese affianca anche un sistema di monitoraggio dei propri mezzi volanti, una sorta di “radar” che identifica i droni in volo sugli obiettivi sensibili, nelle no flight zone in tutti gli spazi aerei in genere.

Gli enti di assistenza al volo possono installare in prossimità di aeroporti l’apparato AeroScope (antenne, monitor, decoder etc.) per poter analizzare nel dettaglio tutto il traffico drone attorno all’area prestabilita.

Immagine che mostra il monitor del sistema DJI Aeroscope

In realtà non si tratta di un radar, nonostante siano visibili sulla mappa del monitor la localizzazione dei droni e il tracciato di volo da loro eseguito come in un classico sistema di tracciamento per aeromobili.

Il sistema utilizza il medesimo canale di comunicazione radio tra il drone e il radiocomando per trasmettere informazioni riguardo il numero di serie (con le generalità del pilota/operatore), la telemetria: che include posizione, altitudine, velocità orizzontale/verticale e la direzione del mezzo.
Per fare questo vengono poste (per la versione fissa) una o più antenne, facendole lavorare in ricezione, nell’area oggetto di “protezione”, oppure si possono allestire postazioni mobili contenute in una valigetta ed alimentate, se necessario, a batteria: in questo modo si possono creare in pochi minuti centri di monitoraggio per mettere in sicurezza ad esempio manifestazioni e concerti.

Il modo operativo non necessita di alcuna modifica al mezzo (montaggio di transponder, chip etc).
Il sistema, agendo come descritto prima, non necessita di un’attivazione da parte del pilota, rendendo il tutto automatico e trasparente.

Il problema di AeroScope è evidente: al momento è in grado di rilevare solo i droni DJI e quelli che operano con Wi-Fi aperto, ma non ancora i sistemi di altre marche.
Bisogna anche ammettere che quasi i due terzi dei droni in circolazione sono proprio Dji.
Sembrerebbe comunque che il colosso cinese si stia muovendo per unificare l’identificazione di tutti i droni, compresi quelli non proprietari.

AeroScope potrebbe quindi apparire come una delle soluzioni più economiche per gli operatori di droni e allo stesso tempo mantenere uno standard di sicurezza, funzionalità e privacy degli stessi piloti estremamente alto, insomma farebbe il suo lavoro.

DRONERADAR

Immagine che mostra uno smartphone in cui è installata l'app DroneRadar

DroneRadar è un’ applicazione DAMS (Drone Awareness and Monitoring System) si pone come sistema atto a migliorare la sicurezza dello spazio aereo fornendo soluzioni per eseguire, monitorare e integrare le operazioni con i droni con il traffico aereo nei cieli europei, con uno speciale occhio di riguardo per le no fly zone su città/aeroporti ed obiettivi particolarmente sensibili.

Il progetto coinvolge quattro aziende polacche: FlyTech UAV per quanto riguarda la parte di integrazione del sistema sugli APR, la Droneradar per il data management e la Aerobits per lo sviluppo di ricevitori micro ADS-B e CreoTech, un’azienda specializzata nella strumentazione per l’industra aerospaziale.

A differenza di AeroScope, Droneradar utilizza il sistema ADS-B che prevede l’utlizzo di micro ricevitori, che utilizzano questo tipo di tecnologia, a bordo.

Come funziona la tecnologia ADS-B?

Qui sotto la spiegazione video del sistema

L’apparato ADS-B (Automatic Dependent Surveillance-Broadcast) consiste in un ricevitore ed un trasmettitore, montati su un aeromobile, che permettono lo scambio di dati relativi al volo.
Ogni aeromobile, ricevendo il segnale GPS, definisce la sua posizione nello spazio, integra questa informazione con vari dati su velocità, piano di volo, status del volo ed invia il tutto periodicamente ed in maniera automatica alle stazioni di terra.
Le stazioni sono controllate dagli enti del traffico aereo che possono vedere in real time le informazioni e le posizioni di tutti gli aeromobili nel loro spazio di competenza su appositi monitor.
L’aeromobile condivide queste informazioni anche con il traffico nelle vicinanze.
La stazione di controllo invierà una serie di informazioni all’aeromobile, quali la situazione del traffico intorno ad esso ed i bollettini meteo.
I vantaggi sono evidenti: il segnale utilizzato è digitale, infatti se questo viene ricevuto correttamente non degrada con la distanza, inoltre il volume di infomazioni trasmettibili con questo sistema sono molte di più rispetto ad altri tipi di tecnologie.
Lo “svantaggio”, come succede per i radar secondari, consiste nel fatto che il sistema ADS-B è una tecnica cooperativa, ovvero che sull’aeromobile deve esserci NECESSARIAMENTE un trasponder ADS-B che comunica con le stazioni di terra, altrimenti la sua presenza non viene rilevata, cosa che invece si può vedere dal radar primario dove i bersagli sono totalmente passivi nel processo di rilevazione.

In questa figura si vede lo schema, a grandi linee, del funzionamento di tutto l’apparato ADS-B.
Immagine ch mostra il principio di funzionamento del sistema Droneradar ADS-B

E qui sotto c’è un video di  come funzionerebbe l’apparato in caso di un pericolo di collisione tra un elicottero e un APR.

Droneradar è la prima piattaforma europea, e probabilmente mondiale, che consente l’integrazione del traffico aereo con quello drone, cosa molto più interessante rispetto ad AeroScope.
La piattaforma di sistema non è restrittiva ed è basata su un cloud che consente la registrazione, il monitoraggio e la gestione delle operazioni con l’APR.
Il sistema si basa su semplici concetti facilmente comprensibili sia dagli amatori che per gli operatori professionali (implementato da più funzionalità).

Droneradar è pienamente operativo in Polonia da dicembre 2015.

Nel corso del primo anno, l’applicazione mobile è stata scaricata e utilizzata da oltre 20.000 utenti (iOS e Android).

Qui sotto c’è il ricevitore per la stazione di terra ADS-B del sistema Droneradar
Immagine che mostra lo schema di funzionamento del ricevitore DroneRadar ADS-B

E qui il ricevitore micro ADS-B del sistema Droneradar da installare sull’APR
Immagine che mostra le dimensioni del ricevitore ADS-B Micro di DroneRadar paragonato ad una moneta di 1 centesimo

COME FUNZIONA DRONERADAR?

Droneradar utilizza i dati ufficiali di PANSA (Agenzia polacca per i Servizi di navigazione Aerea) così che gli spazi aerei nell’applicazione siano omologhi a quelli reali.
Sullo schermo del proprio dispositivo mobile, l’utente può vedere la limitazione dello spazio aereo agli operatori APR, al fine di proteggere i CTR e le ATZ.
Il sistema mostra anche eventi speciali come le operazioni HEMS (elisoccorso).
L’App controlla automaticamente lo spazio aereo analizzando i dati forniti dall’utente.
In base alle regole dello spazio aereo interessato, l’utente può scegliere una delle tre categorie di peso (<0,6Kg / 0,6-25Kg / 25-150Kg).
Il sistema abbina automaticamente le restrizioni e le informazioni di spazio aereo visualizzate in base alla categoria di peso selezionata.
Le tre luci poste nella parte superiore dello schermo informano l’utente su una possibile prosecuzione del volo senza ulteriori restrizioni; non è infatti possibile procedere senza le istruzioni necessarie da parte della torre.

Esempio per un volo in CTR tramite l’applicazione

1) il pilota effettua il login nell’App ed inserisce i dati del volo che andrà ad effetutare;

2) Il pilota tramite un percorso diretto chiama la Torre di Controllo che ha competenza su quello spazio per ottenere l’autorizzazione al volo;

3) A seconda della decisione del controllore del traffico aereo, il pilota visualizzerà uno dei seguenti messaggi:

  • Accettato (clearance ottenuta, icona verde chiaro);
  • Rifiutato (vietato il volo, icona grigia);
  • Accettato con modifiche (spazio ottenuto con restrizioni impostate dal controllore del traffico aereo, icona verde scuro);
  • Rifiutato con modifiche (vietato il volo, l’operazione può iniziare in un secondo momento impostato dal controllore del traffico aereo).

4) Una volta terminato il volo il pilota ha l’obbligo di chiamare la torre di controllo per comunicare l’avvenuto atterraggio e conclusione della missione.

L’Applicazione richiede un dispositivo mobile come uno smartphone o un tablet, dotato di GPS ed accesso ad Internet funzionando appunto con una tecnologia di broadcasting.

Chiaramente, DroneRadar è una soluzione che molti operatori APR e ATC hanno aspettato ed ha un enorme potenziale per le procedure di strutturazione necessarie per integrare le operazioni UAV nel controllo di tutto il traffico aereo.
Con questo sistema gli enti di assistenza al volo europei e le altre autorità avrebbero finalmente la supervisione delle operazioni APR registrate inserite in un contesto più ampio di traffico aereo/aeroportuale.

Immagine che mostra l'installazione del sistema DroneRadar nella torre di controllo dell'aeroporto di Varsavia

L’aeroporto di Varsavia Babice, che supporta oltre 40.000 operazioni di aviazione generale scuola/turistica ogni anno, è stato collegato a Droneradar.
L’accordo relativo all’accesso al sistema è stato firmato tra Agenzia polacca per i Servizi di navigazione Aerea (PANSA) e il gestore dell’aeroporto, Centro servizi logistici (CUL), appartenente al Ministero dell’Interno e dell’Amministrazione.
Gli utenti principali del piccolo scalo sono elisoccorso polacco, Polizia, Aeroclub, scuole private di aviazione generale e alcune società di lavoro aereo.
Ora, ottenere il permesso per un volo con un drone nella parte settentrionale di Varsavia (ATZ EPBC) è stato semplificato e digitalizzato.

In conclusione dopo averti illustrato due di alcuni sistemi possibili spiegandoti le loro peculiarità, voglio darti un consiglio, qualsiasi saranno i parametri e le tecnologie che si adotteranno in futuro (anche dopo il tanto atteso regolamento EASA), ricordati di rispettare gli spazi aerei in qualsiasi parte d’Europa o del mondo ti ritroverai ad operare per lavoro oppure per diletto.

Nel cielo non siamo soli!

A cura di Flavio Angoli

 

Spero che anche questo articolo di Flavio possa averti dati spunti di riflessione sulla sicurezza dei droni in volo.
Per ogni dubbio e domande, lo spazio qui sotto è a tua disposizione!

 

Se ti va di contribuire ai contenuti di questo blog con argomenti che riguardano la topografia, i droni, le misure, i software, la cartografia e gli strumenti e ti va di scrivere un articolo da pubblicare in queste pagine, io ne sarei molto contento, oltre che davvero onorato.
Scrivimi su Telegram qui: telegram.me/paolocorradeghini o mandami un’email a paolo.corradeghini[at]3dmetrica.it su quello di cui vorresti parlare.
Questo spazio è a disposizione per la condivisione di contenuti ed informazioni!

 

A presto!

Paolo Corradeghini

 

 

Fotografia di Flavio AngoliSono Flavio Angoli, lombardo (sebino per la precisione), classe 1994.
Da sempre affascinato dal mondo aeronautico, inizio dalle simulazioni di volo in cameretta per finire a conseguire un attestato di volo VDS a 19 anni.
Mi avvicino al mondo dei droni nel 2013 decidendo, dopo due anni di test, schianti, fallimenti e soddisfazioni, di fondare Zenith – Aerial Solutions un mio personale progetto lavorativo dove mi occupo principalmente di rilievi fotogrammetrici ed ispezioni.
Parallelamente avverto il bisogno di voler trasmettere la passione per i droni e la cultura aeronautica in genere agli altri (non smetterei mai di parlarne!) ed a Luglio 2017 divento istruttore di volo.
Entusiasta delle nuove tecnologie e delle loro applicazioni, EXCELSIOR! è il motto che mi guida nella vita.
Attualmente continuo la mia esperienza lavorativa nel campo fotogrammetrico e collaboro con una scuola di volo come istruttore.

Se pensi che possa essere utile ad altri, condividilo!Share on Facebook
Facebook
Share on LinkedIn
Linkedin
Tweet about this on Twitter
Twitter
Email this to someone
email

Related posts:

  1. DRONI E SICUREZZA
  2. FOTOGRAMMETRIA CON LO SPARK
  3. QUELLO CHE DEVI SAPERE SE VUOI LAVORARE CON I DRONI
  4. UN RILIEVO CON DRONE ALLE CINQUE TERRE
aprdjidronedroneradardroniflightsafetysaprsicurezzauavvolo
Share

STRUMENTI

Paolo Corradeghini

You might also like

Lidar e software di elaborazione dei dati
20 Aprile 2022
DRONI, RTK, PPK, RILIEVI FOTOGRAMMETRICI, FOTO A TERRA E PUNTI NOTI
10 Giugno 2021
DRONI, RILIEVI ED INACCESSIBILITÀ
4 Giugno 2021

Lasciami un commento!

  • Commenta nel riquadro qui sotto
  • Commenta con Facebook

Leave A Reply


  • CHI SONO

    Paolo Corradeghini immagine profilo
    Paolo Corradeghini, ligure, classe 1979, ingegnere per formazione, topografo di professione, sportivo per necessità e fotografo per passione. Fai click sulla mia faccia e scopri qualche informazione in più.
  • SE VUOI PUOI SUPPORTARMI

    Diventa finanziatore di 3DMetrica

    Se quello che pubblico e che condivido è interessante ed è qualcosa di valore per te, per il tuo lavoro e per la tua attività, puoi scegliere di supportare il progetto di 3DMetrica diventandone finanziatore.
    Clicca sull'immagine qui sopra per avere più informazioni.
  • C’È IL CANALE TELEGRAM!

    Canale Telegrma 3DMetrica
    Iscriviti al canale Telegram di 3DMetrica dove, ogni giorno, condivido aggiornamenti, informazioni, contenuti, notizie, novità e dietro le quinte del mio lavoro.
    In amicizia e senza formalità!
    ISCRIVITI QUI!
  • CERCA NEL BLOG

  • EBOOK – Pensieri topografici del 2020

    Ebook-pensieri-topografici-2020
  • EBOOK – Pensieri topografici 2018-2019

    Ebook-pensieri-topografici-2020
  • PUOI SEGUIRMI SU INSTAGRAM…

    tredimetrica

    Con lo strumento "Point List Picking" di Cloud Com Con lo strumento "Point List Picking" di Cloud Compare puoi selezionare diversi punti di una nuvola, da portare in planimetria.

Alla fine puoi creare un file di testo o una nuova nuvola di punti, fatta solo dai punti che hai selezionato.
O entrambe le cose.

In un software di topografia poi, i punti 3D si trasformano facilmente in punti "topografici" (anche se non derivano da una misura strumentale diretta) ai quali puoi assegnare uno stile del simbolo ed aggiungere diversi campi testuali.

#cloudcompare #nuvoledipunti #3d #pointlistpicking
    [Nuvole Lidar e classificazione automatica del ter [Nuvole Lidar e classificazione automatica del terreno - Prima di tutto togli (almeno) gli "Outliers"]
Prima di fare la classificazione automatica del terreno degli elementi di una nuvola di punti Lidar ti conviene pulirla un po' affinchè il risultato del processo sia buono.

Gli "outliers" sono i più insidiosi.
Se ad esempio ci sono punti isolati sotto il livello reale del piano campagna, questi possono dare indicazioni fuorvianti al classificatore.

Nelle immagini che condivido in questo post vedi:
1. una nuvola Lidar (completa e colorata);
2. la classificazione del terreno senza la preventiva rimozione degli outlier;
3. la nuvola vista di lato con evidenza degli outlier;
4. la classificazione del terreno dopo la pulizia.

#lidar #nuvoledipunti #3d
    [Stazione Totale - Misure di distanza - Coordinate [Stazione Totale - Misure di distanza - Coordinate proiettate e cose che non tornano]
Fai attenzione al fattore di scala dei sistemi di riferimento proiettati quando fai misure con la stazione totale.

La distanza diretta, misurata con stazione totale, tra due punti in campo è diversa tra la distanza proiettata sul piano e presa tra le coordinate Nord ed Est degli stessi punti misurati con un GPS.

Nel passaggio da un sistema di coordinate geografiche ad un sistema cartografico si applica un fattore di scala.
Nel sistema di riferimento ETRF2000-UTM, questo fattore di scala è 0.9996.

Su 100 m lasci per strada 4 cm.
Su 3 km perdi 1.20 m!

Credo che questa sia un'informazione molto importante da gestire nei rilievi e nella restituzione.
    [Laser scanner e ombre] Il laser scanner è una m [Laser scanner e ombre]

Il laser scanner è una misura attiva ma i raggi emessi non distruggono gli oggetti che incontrano nel loro percorso!

Ci sono scanner che permettono di registrare più ritorni, per lo stesso raggio, ma se questo sbatte contro un muro, un tetto, un'auto o il terreno, non riesce ad andare oltre.
E meno male!

Al di là di questa introduzione, in una scansione terrestre (TLS) è molto probabile che ci siano ostacoli che fermano parte dei raggi e proiettano delle "ombre" nella nuvola di punti.
Lì non ci sono informazioni.

La forma e, soprattutto, la distanza dell'ostacolo dall'emettitore determinano la dimensione dell'ombra.

Anche se un elemento sembra poco rilevante rispetto alla scena da scansionare, la sua ombra potrebbe cancellare parecchi punti che, tradotti in superficie da rilevare, possono diventare parecchi metri quadrati.

Se non puoi liberarti dell'ostacolo l'unico modo per riempire le ombre è quello di fare più scansioni, da punti diversi, in modo che l'emettitore riesca a "vedere" oltre.

La programmazione di un rilievo laser scanner in campo tiene conto anche di questo.
Più stazioni fanno aumentare i tempi operativi di lavoro.
E con uno scanner ad approccio topografico le scansioni extra si fanno sentire nel budget finale delle ore in campo!

#laserscanner #3d #nuvoledipunti #pointcloud #trimble #trimblesx10
    [Aerofotogrammetria - Ortofoto sull'acqua] Si poss [Aerofotogrammetria - Ortofoto sull'acqua]
Si possono creare ortofoto d'acqua (ferma) anche se il modello 3D fotogrammetrico fa schifo ed è bucato.

Se la nuvola di punti o la mesh sono "bucate" è perchè il software non è stato capace di trovare punti di legame nell'allineamento delle immagini.
Ma non è detto che l'ortofoto non possa venire fuori ugualmente bene.
Par farlo succedere devi creare una superficie di riferimento, su cui "stendere" le fotografie, ortorettificate, priva di buchi.
Puoi usare il DEM o la Mesh.
Quando fai creare il DEM (Modello Digitale di Elevazione) hai la possibilità di dire al software di interpolare i buchi.

L'interpolazione della mesh non sempre va a segno al primo colpo (in realtà neppure quella del DEM) ma ci sono altri strumenti (più o meno avanzati) che ti vengono in aiuto.

L'accorgimento da prendere in fase di presa fotografica è di estendere la copertura delle fotografie ad un bel pezzo extra di riva, dove sei sicuro che il software fotogrammetrico lavorerà senza problemi nella creazione di nuvola di punti e mesh.

#ortofoto #fotogrammetria #aerofotogrammetria #3d #nuvoladipunti #mesh #dem
    [Rilievi di argini e vegetazione] Gli argini di c [Rilievi di argini e vegetazione]

Gli argini di canali artificiali, realizzati in terra, si prestano bene ad un rilievo aerofotogrammetrico ma, affinché il rilievo sia davvero efficace, andrebbe fatto dopo la pulizia dalla vegetazione.

Un sorvolo su un argine pulito permette di creare una nuvola di punti efficace da cui estrarre informazioni per tutta la lunghezza del tratto rilevato.

Se invece le sponde sono vegetate, il dato che si ottiene potrà essere buono qua e là ma sarà comunque globalmente più scarso rispetto alle condizioni ideali.

Lo sfalcio ed il decespugliamento sono attività che possono avere costi importanti.
Gli Enti locali hanno solitamente un piano di sfalcio sulle aree di competenza, specialmente se si tratta di zone frequentate, aree verdi, parchi e percorsi ciclopedonali.
Se hai tempo di aspettare, vale la pena coordinarsi in tal senso per andare in campo subito dopo le pulizie programmate.
Se invece hai fretta si devono accettare costi maggiori per lo sfalcio straordinario.

O si può andare in campo con la tecnologia LiDAR su drone per riuscire a penetrare la copertura vegetale.
Anche se non sempre si riesce a fare!

P.S.
Tutto questo vale per la parte emersa.
Per andare sott'acqua servono altri strumenti!
    [Monitoraggio e considerazioni sul tema] Prendend [Monitoraggio e considerazioni sul tema]

Prendendo spunto da una recente installazione di sistema di monitoraggio della falesia del Cimitero di Camogli (con tecnologia GNSS da parte di Gter e Yet It Moves) faccio alcune considerazioni sul tema.
Gli strumenti per monitorare possono essere tanti e quello che accumuna ogni situazione è la ripetizione nel tempo delle misure.

La precisione del controllo può già fare una discriminazione.

Il caso di Camogli pone poi l'attenzione sul "quante misure fare nel tempo".
Una rete GNSS che elabora dati in continuo permette di accedere alle letture dei singoli nodi con una frequenza alta (si che può arrivare ad essere anche di qualche ora).

A Camogli mi sono occupato dei rilievi fotogrammetrici e laser scanner di tutta la porzione di costa, in due momenti differenti, da cui si sono potuti misurare movimenti macroscopici che hanno permesso di fare valutazioni successive per la scelta dei punti di installazione dei sensori del monitoraggio di precisione.

Credo anche che sia rilevante l'aspetto della responsabilità di chi restituisce un dato da monitoraggio.
Questi dati servono per scelte progettuali, decisioni di sicurezza e protezione civile per niente banali.
Vale la pena "metterci la testa".

Io non sono un esperto di monitoraggi, anzi non lo sono per niente, ma il tema della misura legata, in qualche modo, alla "quarta dimensione", quella del tempo, mi affascina molto.
Se hai contributi, commenti o esperienza da condividere fallo assolutamente perchè il tema è interessante!
    Sono iniziati (in realtà già da qualche mese) i Sono iniziati (in realtà già da qualche mese) i lavori di messa in sicurezza dei versanti sopra la Via dell'Amore ed il ripristino della passeggiata, chiusa ormai da diversi anni).

Reti di placcaggio, barriere paramassi, nuove gallerie e rifacimento di tutto il percorso per un po' di milioni di euro ed almeno due anni di tempo.

Dovrei supportare i lavori con alcune "cose" dall'alto...

#viadellamore #parcocinqueterre  #lavori #roccia #drone
    [Laser scanner, nuvole colorate e fotocamere integ [Laser scanner, nuvole colorate e fotocamere integrate]

Per colorare una nuvola di punti da scansione laser servono delle fotografie.
Ci sono ormai parecchi scanner con fotocamera integrata, che semplificano il lavoro dell'operatore.

L'esposizione delle immagini deve essere la più "corretta" possibile per  riprodurre al meglio l'informazione colorimetrica nei punti della nuvola.

Non conosco il funzionamento specifico di ogni camera ma vale la pena dedicare un po' di tempo a capire come lavora l'esposimetro ed evitare così punti bianchi (per foto sovraesposte) o neri (per sottoesposizione).

Nel caso della SX10 di Trimble (l'unico caso che conosco), si può fissare un'esposizione costante ed è ok se l'illuminazione della scena scansionata non cambia.
I risultati sono scarsini se si passa da alte luci ad ombre e viceversa.

Nelle prime due immagini la nuvola è colorata da foto con esposizione fissa e presa ai due estremi delle zone di luminosità della scena scansionata.

L'altra opzione possibile è quella di scegliere un'esposizione automatica e variabile che permette di compensare i cambi di luce, per un risultato più armonico.

Occhio che l'angolo di campo dell'ottica incide parecchio.
È difficile avere tutto quanto esposto perfettamente in un'immagine sferica a 360°.
A meno di non sfruttare la tecnica dell'HDR (che alcuni scanner fanno)

Se poi c'è la possibilità di usare più camere (a lunghezza focale diversa) per scattare foto da usare nella colorazione della nuvola, quella a campo più stretto permette una lettura dell'esposizione più accurata rispetto alle panoramiche.
Ma servono più foto per coprire l'intera scena.
    [Fotogrammetria ed attenzione al colore] Spoiler: [Fotogrammetria ed attenzione al colore]
Spoiler: questo post non è interessante se ti occupi solo di fotogrammetria per il rilievo del territorio.
Ma se fai anche ricostruzioni 3D di edifici storici, beni culturali, monumenti ed opere d'arte di ogni forma e dimensione, credo che serva molta attenzione anche alla riproduzione fedele del colore nel processo fotogrammetrico.

Nella campagna di scatto è necessario utilizzare degli oggetti  che permettano di correggere le dominanti di colore in post elaborazione.
Si tratta generalmente di tabelle formate da quadrati colorati (in cui ogni colore è codificato).
In inglese si chiamano "color checker".
Li dovresti mettere nella scena e fotografare nelle stesse condizioni di illuminazione dell'oggetto del rilievo.

In post elaborazione poi si prendono le immagini in cui è presente il color checker e si applicano correzioni cromatiche sulla base del colore "letto" nell'immagine rispetto a quello che dovrebbe essere realmente (i valori codificati).

Tutto questo deve essere accompagnato da un altro paio di cose:
1. il controllo dell'illuminazione della scena;
2. un monitor calibrato (tutto passa attraverso i pixel del tuo schermo e se non sono "veritieri" il rischio di vanificare tutto il processo che ti ho raccontato, avendo una percezione sballata dei colori, è alto).

#fotogrammetria #colore #colorchecker
    [Lidar e software di elaborazione dei dati] Condiv [Lidar e software di elaborazione dei dati]
Condivido alcune caratteristiche che un software di elaborazione dati Lidar (da drone) dovrebbe avere.

1. Gestione dei dati grezzi della base GNSS di riferimento per il calcolo della traiettoria.

2. Aggiustare e/o correggere le traiettorie.

3. Dividere la traiettoria e, conseguentemente, la nuvola di punti.

4. Colorare la nuvola di punti e gestire problemi di "matching" tra immagine e traiettoria.

5. Gestione di datum, sistemi di riferimento e coordinate.

6. Misurare la nuvola di punti.

7. Visualizzare i punti secondo le informazioni dei campi scalari (intensità e numero di ritorni, tempo di acquisizione, ...)

8. Esportazione della nuvola in formati comuni.

Poi ce ne sono altri, non necessari, ma che possono aiutare l'elaborazione.

9. Segmentare, ritagliare ed eliminare parti della nuvola di punti.

10. Filtrare la nuvola per eliminare rumore ed outliers, oltre che sottocampionarla

11. Classificare i punti con algoritmi automatici.

12. Verificare l'accuratezza con punti di coordinate note.

13. Generare report di elaborazione.

Dimentico senz'altro qualcosa.
Se vuoi aggiungere, integrare o commentare in base alla tua esperienza sentiti davvero libero o libera.
È utile per tutti.

#lidar #nuvoledipunti #3d #pointcloud #software #editing #realitycapture
    Se sei in un posto aperto a misurare con il GPS pu Se sei in un posto aperto a misurare con il GPS puoi anche tenere la palina bassa, i satelliti si vedono ugualmente bene.

#gnss #gps #rilievo #topografia #misura
    È importante aggiornare i firmware degli strument È importante aggiornare i firmware degli strumenti di rilievo ed i software dei dispositivi che li controllano.

Credo che l'evoluzione tecnologica di quello che si usa in campo si porti con sé la necessità di una consapevolezza nuova sulla loro manutenzione.

Se prima gli aspetti legati alla taratura, al controllo delle parti meccaniche, ..., bastavano per permetterne il funzionamento, ora serve un'attenzione in più.

Non vale per ogni strumento che si vede in giro, ma credo che, piano piano, sarà un aspetto con cui tutti ci confronteremo.

Le case produttrici ti permettono di aggiornare continuamente una stazione totale o un laser scanner con nuovi firmware, che ne integrano funzionalità o correggono dei "bug".

E lo stesso succede per i software che girano sui dispositivi di controllo (smartphone, tablet, ...).

Nuove release migliorano la user experience o, anche qui, sistemano gli errori.

Se dopo un rilievo spari aria compressa e spennelli una stazione totale per togliere la polvere, prima di andare in campo dovresti controllare che software e firmware siano ok e tutto sia funzionante.

Usiamo strumenti tecnologicamente fantastici che tuttavia potrebbero incepparsi in campo per qualche "banale" conflitto software irrisolto.

#rilievo #strumenti #topografia #software #firmware
    La fotogrammetria non è la tecnica ideale per lav La fotogrammetria non è la tecnica ideale per lavorare con la vegetazione: copre il terreno che sta sotto (in una presa da drone) e non è facile ricostruirla.

Fotografie ad alta risoluzione, scattate da un sensore grande (full frame), possono avere problemi maggiori per ricreare nella nuvola di punti, le chiome di alberi.

Da quando ho iniziato ad usare una fotocamera più performante (full frame - 40 Megapixel) rispetto a quelle che ho usato in passato (1" - 24 Megapixel) sto verificando dei buchi nella nuvola di punti laddove ci sono alberi spogli.
Può sembrare controintuitivo ma è così.

Fotografie troppo dettagliate, di elementi molto complessi, porosi e con informazioni disposte su vari piani (tutta l'altezza degli alberi) non aiutano il software, anzi...

Per provare ad avere qualche informazione in più lì sopra,  puoi lanciare l'elaborazione della nuvola di punti ad una qualità inferiore.
Le immagini del dataset vengono sottocampionate (la risoluzione si riduce) ed il software structure from motion lavorerà con una minore quantità di dettagli descritti nei pixel.
Questo aumenta il numero di punti lungo gli alberi, anche se la loro confidenza (cioè l'attendibilità della posizione 3D) è piuttosto scarsa.
Oh, non è che il problema sia superato, anzi...
La nuvola di punti in effetti fa ancora piuttosto schifo.

La presenza di foglie aiuta il processo quindi se vuoi avere informazioni sulle altezza degli alberi è meglio acquisire i dati in estate.
Ed anche il tipo di albero (forma e dimensione) influenza il risultato...

#fotogrammetria #structurefrommotion #nuvoledipunti #3d #pointcloud
    Il back up dei dati subito dopo un rilievo, mette Il back up dei dati subito dopo un rilievo, mette al sicuro il lavoro della giornata.

Molti dispositivi di controllo sono palmari, smartphone o tablet, piuttosto avanzati, ma pur sempre a rischio di danneggiamento software o, peggio, furto o danno fisico.

Perdere i dati di una giornata di lavoro può avere conseguenze importanti.

Se hai rilevato qualcosa che non c'è più (scavo, abbancamento, demolizione) non potrai ripetere il rilievo.

Ci sono vari livelli di "sicurezza" per i dati di uno strumento.

Salvare i dati in una memoria interna (ad uno scanner o una stazione totale) ed in quella del controller ti permette di avere i file in due posti distinti.

Backuppare un lavoro in una chiave USB o in un hard disk esterno è un'altra opzione valida. Vale però per dispositivi dotati di porta USB.

Salvare i dati nel cloud è forse la scelta più sicura. Attivando un hot spot con lo smartphone riesci a mandarli in posti che sono a prova di furto o danno. Il cloud ti permette anche di essere molto efficiente se c'è qualcuno pronto a riceverli ed iniziare subito ad elaborarli.

Una volta ho temuto di aver perso i dati di un rilievo "un po' complicato".
Non ho passato una bella mezz'ora!
    [Laser scanner e traffico] Un camion che passa da [Laser scanner e traffico]

Un camion che passa davanti ad un laser scanner e è un ostacolo al rilievo.
A volte il traffico si riesce a gestire (movieri, gestione del cantiere o indicazioni specifiche, ...).
Altre volte no.
L'ideale immobilismo è, di fatto, irrealizzabile.

Alcuni scanner hanno la possibilità di mettere in pausa, una scansione per riprenderla una volta passato il mezzo.

Anche aumentare la qualità della scansione può aiutare.
Spesso una qualità maggiore significa effettuare la scansione, della stessa area, più volte.
Se i mezzi si muovono, ci sono buone probabilità che, se te li ritrovi tra i piedi al primo giro, non ci saranno più al secondo.

Fare scansioni da punti diversi aiuta.
Scegli punti di scansione in modo che si integrino uno con l'altro.

Oppure  puoi sempre considerare l'ipotesi di fare il rilievo di notte quando, auspicabilmente, il traffico è ridotto o assente.
    Un ponte può creare problemi ad un rilievo con Li Un ponte può creare problemi ad un rilievo con Lidar lungo un alveo

Manca il pezzo d'alveo sotto al ponte.
Non è sempre vero.
Ma può capitare.

Non c'è l'intradosso ed i dettagli non sono ricchissimi.

La classificazione del terreno può venire ingannata.
Non è facile per un software di classificazione automatica  distinguere il ponte dal terreno.
Se ci pensi ha la stessa quota del piano stradale.

Questi problemi si possono risolvere.

Una scansione con laser terrestre mette (forse) a posto i primi due punti 

Se c'è acqua o non riesci ad andare sotto all'impalcato puoi interpolare il terreno con le informazioni a monte ed a valle.
Se però c'è una soglia o un salto dovrai battere dei punti con una stazione totale.

Per la classificazione automatica l'intervento manuale è la soluzione migliore per garantire un risultato confidente.

Il Lidar da drone è molto efficace per acquisire dati in questi ambiti (occhio alla vegetazione!) ma l'integrazione strumentale è sempre la soluzione più efficiente.

#rilievo #rilievo3d #lidar #drone #lidardadrone #3d #realitycapture #alveo #idraulica #dtm #nuvoledipunti
    Non è detto che quello che ti serva sia un'ortofo Non è detto che quello che ti serva sia un'ortofoto di una facciata.
Potresti correggere la distorsione prospettica con software di fotoritocco e "raddrizzare" l'immagine (per i tuoi scopi).

Il punto di presa e la forma dell'oggetto fotografato deformano la rappresentazione secondo una vista prospettica.
Linee parallele nella realtà (muri verticali) sono convergenti nello spazio immagine.

Tutti i principali software di photoediting hanno strumenti di correzione della prospettiva.
Ci sono nel famoso Photoshop, nell'open source Gimp e nel "nuovo" ed economico Affinity Photo.

Funzionano più o meno nel solito modo.
Intervieni sulle immagini alterando i pixel e, aiutato da una griglia virtuale, allinei gli elementi dell'immagine alla maglia.
È veloce e non richiede hardware super.

La posizione reciproca tra punto di presa ed oggetto fa molto.
Così come la forma di quello che hai fotografato è rilevante.

È diverso dal fare un'ortomosaico.
Così come è diverso dall'usare, in campo, un obiettivo basculante e decentrabile ("tilt/shift") per le foto.
Ma è piuttosto pratico e può funzionare ugualmente.

Dopo tutto il raddrizzamento delle foto del costruito è una tecnica che gli architetti usano da parecchio tempo.
😉
    Carica di più... Seguire Instagram
  • VUOI ISCRIVERTI ALLA NEWSLETTER?

    Newsletter di 3DMetrica Ti prometto che riceverai una sola email alla settimana.
    Salvo qualche (rara) eccezione...
    Una volta alla settimana ti scrivo i post che pubblico quotidianamente sui miei canali social network, ti metto il link all'ultimo articolo del blog (sperando di farcela a scriverne uno ogni settimana!) ed anche il link per ascoltare la nuova puntate del podcast di 3DMetrica.
  • ARGOMENTI

    CARTOGRAFIA DRONI EBOOK FOTOGRAMMETRIA LASER SCANNER LAVORI LIDAR PODCAST RILIEVI Senza categoria SOFTWARE STRUMENTI TOPOGRAFIA TUTORIAL
  • PAROLE CHIAVE

    3D 3dmetrica 5 terre aerofotogrammetria agisoft photoscan altimetria angoli apr cartografia cloud compare cloudpoints coordinate dem dissesto idrogeologico drone droni elaborazione fotografia Fotogrammetria GIS GNSS GPS GSD immagini laser scanner lidar misura misure nuvola di punti nuvole di punti ortofoto photoscan quota rilievo rilievo aerofotogrammetrico rilievo con drone sapr sistemi di riferimento software stazione totale structure from motion strumenti topografia tutorial uav



© Copyright Ing. Paolo Corradeghini 2021 - PIVA 01260880115